DiT / app.py
wpeebles's picture
Remove sample size argument
8e5d115
import torch
from torchvision.utils import make_grid
import math
from PIL import Image
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL
import gradio as gr
from imagenet_class_data import IMAGENET_1K_CLASSES
from download import find_model
from models import DiT_XL_2
def load_model(image_size=256):
assert image_size in [256, 512]
latent_size = image_size // 8
model = DiT_XL_2(input_size=latent_size).to(device)
state_dict = find_model(f"DiT-XL-2-{image_size}x{image_size}.pt")
model.load_state_dict(state_dict)
model.eval()
return model
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
find_model(f"DiT-XL-2-512x512.pt")
model = load_model(image_size=256)
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device)
current_image_size = 256
current_vae_model = "stabilityai/sd-vae-ft-mse"
def generate(image_size, vae_model, class_label, cfg_scale, num_sampling_steps, seed):
n = 1
image_size = int(image_size.split("x")[0])
global current_image_size
if image_size != current_image_size:
global model
model = model.to("cpu")
del model
if device == "cuda":
torch.cuda.empty_cache()
model = load_model(image_size=image_size)
current_image_size = image_size
global current_vae_model
if vae_model != current_vae_model:
global vae
if device == "cuda":
vae.to("cpu")
del vae
vae = AutoencoderKL.from_pretrained(vae_model).to(device)
# Seed PyTorch:
torch.manual_seed(seed)
# Setup diffusion
diffusion = create_diffusion(str(num_sampling_steps))
# Create sampling noise:
latent_size = image_size // 8
z = torch.randn(n, 4, latent_size, latent_size, device=device)
y = torch.tensor([class_label] * n, device=device)
# Setup classifier-free guidance:
z = torch.cat([z, z], 0)
y_null = torch.tensor([1000] * n, device=device)
y = torch.cat([y, y_null], 0)
model_kwargs = dict(y=y, cfg_scale=cfg_scale)
# Sample images:
samples = diffusion.p_sample_loop(
model.forward_with_cfg, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device
)
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
samples = vae.decode(samples / 0.18215).sample
# Convert to PIL.Image format:
samples = samples.mul(127.5).add_(128.0).clamp_(0, 255).permute(0, 2, 3, 1).to("cpu", torch.uint8).numpy()
samples = [Image.fromarray(sample) for sample in samples]
return samples
description = '''This is a demo of our DiT image generation models. DiTs are a new class of diffusion models with
transformer backbones. They are class-conditional models trained on ImageNet-1K, and they outperform prior DDPMs.'''
duplicate = '''Skip the queue by duplicating this space and upgrading to GPU in settings
<a href="https://huggingface.co/spaces/wpeebles/DiT?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>'''
project_links = '''
<p style="text-align: center">
<a href="https://www.wpeebles.com/DiT.html">Project Page</a> &#183;
<a href="http://colab.research.google.com/github/facebookresearch/DiT/blob/main/run_DiT.ipynb">Colab</a> &#183;
<a href="http://arxiv.org/abs/2212.09748">Paper</a> &#183;
<a href="https://github.com/facebookresearch/DiT">GitHub</a></p>'''
examples = [
["512x512", "stabilityai/sd-vae-ft-mse", "golden retriever", 4.0, 200, 4, 1000],
["512x512", "stabilityai/sd-vae-ft-mse", "macaw", 4.0, 200, 4, 1],
["512x512", "stabilityai/sd-vae-ft-mse", "balloon", 4.0, 200, 4, 1],
["512x512", "stabilityai/sd-vae-ft-mse", "cliff, drop, drop-off", 4.0, 200, 4, 7],
["512x512", "stabilityai/sd-vae-ft-mse", "Pembroke, Pembroke Welsh corgi", 4.0, 200, 4, 0],
["256x256", "stabilityai/sd-vae-ft-mse", "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita", 4.0, 200,
4, 1],
["256x256", "stabilityai/sd-vae-ft-mse", "teddy, teddy bear", 4.0, 200, 4, 3],
["256x256", "stabilityai/sd-vae-ft-mse", "cheeseburger", 4.0, 200, 4, 2],
]
with gr.Blocks() as demo:
gr.Markdown("<h1 style='text-align: center'>Scalable Diffusion Models with Transformers (DiT)</h1>")
gr.Markdown(project_links)
gr.Markdown(description)
gr.Markdown(duplicate)
with gr.Tabs():
with gr.TabItem('Generate'):
with gr.Row():
with gr.Column():
with gr.Row():
image_size = gr.inputs.Radio(choices=["256x256", "512x512"], default="256x256", label='DiT Model Resolution')
vae_model = gr.inputs.Radio(choices=["stabilityai/sd-vae-ft-mse", "stabilityai/sd-vae-ft-ema"],
default="stabilityai/sd-vae-ft-mse", label='VAE Decoder')
with gr.Row():
i1k_class = gr.inputs.Dropdown(
list(IMAGENET_1K_CLASSES.values()),
default='golden retriever',
type="index", label='ImageNet-1K Class'
)
cfg_scale = gr.inputs.Slider(minimum=1, maximum=25, step=0.1, default=4.0, label='Classifier-free Guidance Scale')
steps = gr.inputs.Slider(minimum=4, maximum=1000, step=1, default=75, label='Sampling Steps')
# n = gr.inputs.Slider(minimum=1, maximum=16, step=1, default=1, label='Number of Samples')
seed = gr.inputs.Number(default=0, label='Seed')
button = gr.Button("Generate", variant="primary")
with gr.Column():
output = gr.Gallery(label='Generated Images').style(grid=[2], height="auto")
button.click(generate, inputs=[image_size, vae_model, i1k_class, cfg_scale, steps, seed], outputs=[output])
with gr.Row():
ex = gr.Examples(examples=examples, fn=generate,
inputs=[image_size, vae_model, i1k_class, cfg_scale, steps, seed],
outputs=[output],
cache_examples=True)
demo.queue()
demo.launch()