Spaces:
Configuration error
Configuration error
create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#https://github.com/huggingface/diffusers/tree/main/examples/dreambooth
|
2 |
+
#export MODEL_NAME="stabilityai/stable-diffusion-2-1-base"
|
3 |
+
#export INSTANCE_DIR="./data_example"
|
4 |
+
#export OUTPUT_DIR="./output_example"
|
5 |
+
|
6 |
+
#accelerate launch train_lora_dreambooth.py \
|
7 |
+
# --pretrained_model_name_or_path=$MODEL_NAME \
|
8 |
+
# --instance_data_dir=$INSTANCE_DIR \
|
9 |
+
# --output_dir=$OUTPUT_DIR \
|
10 |
+
# --instance_prompt="style of sks" \
|
11 |
+
# --resolution=512 \
|
12 |
+
# --train_batch_size=1 \
|
13 |
+
# --gradient_accumulation_steps=1 \
|
14 |
+
# --learning_rate=1e-4 \
|
15 |
+
# --lr_scheduler="constant" \
|
16 |
+
# --lr_warmup_steps=0 \
|
17 |
+
# --max_train_steps=30000
|
18 |
+
|
19 |
+
from diffusers import StableDiffusionPipeline
|
20 |
+
from lora_diffusion import monkeypatch_lora, tune_lora_scale
|
21 |
+
import torch
|
22 |
+
import os
|
23 |
+
#os.system('python file.py')
|
24 |
+
import subprocess
|
25 |
+
# If your shell script has shebang,
|
26 |
+
# you can omit shell=True argument.
|
27 |
+
subprocess.run("./run_lora_db.sh", shell=True)
|
28 |
+
|
29 |
+
#####
|
30 |
+
model_id = "stabilityai/stable-diffusion-2-1-base"
|
31 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
|
32 |
+
prompt = "style of sks, baby lion"
|
33 |
+
torch.manual_seed(1)
|
34 |
+
#image = pipe(prompt, num_inference_steps=50, guidance_scale= 7).images[0] #no need
|
35 |
+
#image # nice. diffusers are cool. #no need
|
36 |
+
finetuned_lora_weights = "./lora_weight.pt"
|
37 |
+
|
38 |
+
#####
|
39 |
+
#my fine tuned weights
|
40 |
+
def monkeypatching( alpha): #, prompt, pipe): finetuned_lora_weights
|
41 |
+
monkeypatch_lora(pipe.unet, torch.load(finetuned_lora_weights)) #"./lora_weight.pt"))
|
42 |
+
tune_lora_scale(pipe.unet, alpha) #1.00)
|
43 |
+
image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0]
|
44 |
+
image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg")
|
45 |
+
return image
|
46 |
+
|
47 |
+
with gr.Blocks() as demo:
|
48 |
+
with gr.Row():
|
49 |
+
in_images = gr.Image(label="Upload images to fine-tune for LORA")
|
50 |
+
#in_prompt = gr.Textbox(label="Enter a ")
|
51 |
+
in_steps = gr.Number(label="Enter number of steps")
|
52 |
+
in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level - higher value has more chances to overfit")
|
53 |
+
b1 = gr.Button(value="Create LORA model")
|
54 |
+
with gr.Row():
|
55 |
+
out_image = gr.Image(label="Image generated by LORA model")
|
56 |
+
b1.click(fn = monkeypatching, inputs=in_alpha, outputs=out_image)
|
57 |
+
|
58 |
+
demo.launch(debug=True, show_error=True)
|