ysharma HF staff commited on
Commit
37a1e1f
·
1 Parent(s): 1983366

create app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -0
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #https://github.com/huggingface/diffusers/tree/main/examples/dreambooth
2
+ #export MODEL_NAME="stabilityai/stable-diffusion-2-1-base"
3
+ #export INSTANCE_DIR="./data_example"
4
+ #export OUTPUT_DIR="./output_example"
5
+
6
+ #accelerate launch train_lora_dreambooth.py \
7
+ # --pretrained_model_name_or_path=$MODEL_NAME \
8
+ # --instance_data_dir=$INSTANCE_DIR \
9
+ # --output_dir=$OUTPUT_DIR \
10
+ # --instance_prompt="style of sks" \
11
+ # --resolution=512 \
12
+ # --train_batch_size=1 \
13
+ # --gradient_accumulation_steps=1 \
14
+ # --learning_rate=1e-4 \
15
+ # --lr_scheduler="constant" \
16
+ # --lr_warmup_steps=0 \
17
+ # --max_train_steps=30000
18
+
19
+ from diffusers import StableDiffusionPipeline
20
+ from lora_diffusion import monkeypatch_lora, tune_lora_scale
21
+ import torch
22
+ import os
23
+ #os.system('python file.py')
24
+ import subprocess
25
+ # If your shell script has shebang,
26
+ # you can omit shell=True argument.
27
+ subprocess.run("./run_lora_db.sh", shell=True)
28
+
29
+ #####
30
+ model_id = "stabilityai/stable-diffusion-2-1-base"
31
+ pipe = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to("cuda")
32
+ prompt = "style of sks, baby lion"
33
+ torch.manual_seed(1)
34
+ #image = pipe(prompt, num_inference_steps=50, guidance_scale= 7).images[0] #no need
35
+ #image # nice. diffusers are cool. #no need
36
+ finetuned_lora_weights = "./lora_weight.pt"
37
+
38
+ #####
39
+ #my fine tuned weights
40
+ def monkeypatching( alpha): #, prompt, pipe): finetuned_lora_weights
41
+ monkeypatch_lora(pipe.unet, torch.load(finetuned_lora_weights)) #"./lora_weight.pt"))
42
+ tune_lora_scale(pipe.unet, alpha) #1.00)
43
+ image = pipe(prompt, num_inference_steps=50, guidance_scale=7).images[0]
44
+ image.save("./illust_lora.jpg") #"./contents/illust_lora.jpg")
45
+ return image
46
+
47
+ with gr.Blocks() as demo:
48
+ with gr.Row():
49
+ in_images = gr.Image(label="Upload images to fine-tune for LORA")
50
+ #in_prompt = gr.Textbox(label="Enter a ")
51
+ in_steps = gr.Number(label="Enter number of steps")
52
+ in_alpha = gr.Slider(0.1,1.0, step=0.01, label="Set Alpha level - higher value has more chances to overfit")
53
+ b1 = gr.Button(value="Create LORA model")
54
+ with gr.Row():
55
+ out_image = gr.Image(label="Image generated by LORA model")
56
+ b1.click(fn = monkeypatching, inputs=in_alpha, outputs=out_image)
57
+
58
+ demo.launch(debug=True, show_error=True)