LN3Diff_I23D / nsr /train_util.py
NIRVANALAN
init
11e6f7b
import copy
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
import matplotlib.pyplot as plt
import traceback
import blobfile as bf
import imageio
import numpy as np
# from sympy import O
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
from guided_diffusion.train_util import (calc_average_loss,
find_ema_checkpoint,
find_resume_checkpoint,
get_blob_logdir, log_rec3d_loss_dict,
parse_resume_step_from_filename)
from .camera_utils import LookAtPoseSampler, FOV_to_intrinsics
# from ..guided_diffusion.train_util import TrainLoop
def flip_yaw(pose_matrix):
flipped = pose_matrix.clone()
flipped[:, 0, 1] *= -1
flipped[:, 0, 2] *= -1
flipped[:, 1, 0] *= -1
flipped[:, 2, 0] *= -1
flipped[:, 0, 3] *= -1
# st()
return flipped
# basic reconstruction model
class TrainLoopBasic:
def __init__(
self,
*,
rec_model,
loss_class,
# diffusion,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=1e-3,
# schedule_sampler=None,
weight_decay=0.0,
lr_anneal_steps=0,
iterations=10001,
load_submodule_name='',
ignore_resume_opt=False,
model_name='rec',
use_amp=False,
compile=False,
**kwargs):
self.pool_512 = th.nn.AdaptiveAvgPool2d((512, 512))
self.pool_256 = th.nn.AdaptiveAvgPool2d((256, 256))
self.pool_128 = th.nn.AdaptiveAvgPool2d((128, 128))
self.pool_64 = th.nn.AdaptiveAvgPool2d((64, 64))
self.rec_model = rec_model
self.loss_class = loss_class
# self.diffusion = diffusion
# self.schedule_sampler = schedule_sampler or UniformSampler(diffusion)
self.data = data
self.eval_data = eval_data
self.batch_size = batch_size
self.microbatch = microbatch if microbatch > 0 else batch_size
self.lr = lr
self.ema_rate = ([ema_rate] if isinstance(ema_rate, float) else
[float(x) for x in ema_rate.split(",")])
self.log_interval = log_interval
self.eval_interval = eval_interval
self.save_interval = save_interval
self.iterations = iterations
self.resume_checkpoint = resume_checkpoint
self.use_fp16 = use_fp16
self.fp16_scale_growth = fp16_scale_growth
self.weight_decay = weight_decay
self.lr_anneal_steps = lr_anneal_steps
self.step = 0
self.resume_step = 0
# self.global_batch = self.batch_size * dist.get_world_size()
self.global_batch = self.batch_size * dist_util.get_world_size()
self.sync_cuda = th.cuda.is_available()
# self._load_and_sync_parameters(load_submodule_name)
self._load_and_sync_parameters()
self.dtype = th.float32 # tf32 by default
if use_amp:
self.dtype = th.bfloat16
self.mp_trainer_rec = MixedPrecisionTrainer(
model=self.rec_model,
use_fp16=self.use_fp16,
fp16_scale_growth=fp16_scale_growth,
model_name=model_name,
use_amp=use_amp)
self.writer = SummaryWriter(log_dir=f'{logger.get_dir()}/runs')
self.opt = AdamW(self._init_optim_groups(kwargs))
if dist_util.get_rank() == 0:
logger.log(self.opt)
if self.resume_step:
if not ignore_resume_opt:
self._load_optimizer_state()
else:
logger.warn("Ignoring optimizer state from checkpoint.")
# Model was resumed, either due to a restart or a checkpoint
# being specified at the command line.
# self.ema_params = [
# self._load_ema_parameters(rate, load_submodule_name) for rate in self.ema_rate
# ]
self.ema_params = [
self._load_ema_parameters(
rate,
self.rec_model,
self.mp_trainer_rec,
model_name=self.mp_trainer_rec.model_name)
for rate in self.ema_rate
]
else:
self.ema_params = [
copy.deepcopy(self.mp_trainer_rec.master_params)
for _ in range(len(self.ema_rate))
]
# compile
if compile:
logger.log('compiling... ignore vit_decoder')
# self.rec_model.encoder = th.compile(self.rec_model.encoder)
self.rec_model.decoder.decoder_pred = th.compile(
self.rec_model.decoder.decoder_pred)
# self.rec_model.decoder.triplane_decoder = th.compile(self.rec_model.decoder.triplane_decoder)
for module_k, sub_module in self.rec_model.decoder.superresolution.items(
):
self.rec_model.decoder.superresolution[module_k] = th.compile(
sub_module)
if th.cuda.is_available():
self.use_ddp = True
self.rec_model = th.nn.SyncBatchNorm.convert_sync_batchnorm(
self.rec_model)
self.rec_model = DDP(
self.rec_model,
device_ids=[dist_util.dev()],
output_device=dist_util.dev(),
broadcast_buffers=False,
bucket_cap_mb=128,
find_unused_parameters=False,
)
else:
if dist_util.get_world_size() > 1:
logger.warn("Distributed training requires CUDA. "
"Gradients will not be synchronized properly!")
self.use_ddp = False
self.rec_model = self.rec_model
self.novel_view_poses = None
th.cuda.empty_cache()
def _init_optim_groups(self, kwargs):
raise NotImplementedError('')
def _load_and_sync_parameters(self, submodule_name=''):
# resume_checkpoint, self.resume_step = find_resume_checkpoint() or self.resume_checkpoint
resume_checkpoint = self.resume_checkpoint # * default behaviour
# logger.log('resume_checkpoint', resume_checkpoint, self.resume_checkpoint)
if resume_checkpoint:
self.resume_step = parse_resume_step_from_filename(
resume_checkpoint)
if dist_util.get_rank() == 0:
logger.log(
f"loading model from checkpoint: {resume_checkpoint}...")
map_location = {
'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank()
} # configure map_location properly
resume_state_dict = dist_util.load_state_dict(
resume_checkpoint, map_location=map_location)
if submodule_name != '':
model_state_dict = getattr(self.rec_model,
submodule_name).state_dict()
if dist_util.get_rank() == 0:
logger.log('loading submodule: ', submodule_name)
else:
model_state_dict = self.rec_model.state_dict()
model = self.rec_model
# for k, v in resume_state_dict.items():
# if k in model_state_dict.keys() and v.size(
# ) == model_state_dict[k].size():
# model_state_dict[k] = v
# else:
# logger.log('!!!! ignore key: ', k, ": ", v.size())
for k, v in resume_state_dict.items():
if '._orig_mod' in k: # prefix in torch.compile
k = k.replace('._orig_mod', '')
if k in model_state_dict.keys():
if v.size() == model_state_dict[k].size():
model_state_dict[k] = v
# model_state_dict[k].copy_(v)
else:
# if v.ndim > 1:
# model_state_dict[k][:v.shape[0], :v.shape[1], ...] = v # load the decoder
# model_state_dict[k][v.shape[0]:, v.shape[1]:, ...] = 0
# else:
# model_state_dict[k][:v.shape[0], ...] = v # load the decoder
# model_state_dict[k][v.shape[0]:, ...] = 0
# logger.log('!!!! size mismatch, partially load: ', k, ": ", v.size(), "state_dict: ", model_state_dict[k].size())
logger.log('!!!! size mismatch, ignore: ', k, ": ",
v.size(), "state_dict: ",
model_state_dict[k].size())
elif 'decoder.vit_decoder.blocks' in k:
# st()
# load from 2D ViT pre-trained into 3D ViT blocks.
assert len(model.decoder.vit_decoder.blocks[0].vit_blks
) == 2 # assert depth=2 here.
fusion_ca_depth = len(
model.decoder.vit_decoder.blocks[0].vit_blks)
vit_subblk_index = int(k.split('.')[3])
vit_blk_keyname = ('.').join(k.split('.')[4:])
fusion_blk_index = vit_subblk_index // fusion_ca_depth
fusion_blk_subindex = vit_subblk_index % fusion_ca_depth
model_state_dict[
f'decoder.vit_decoder.blocks.{fusion_blk_index}.vit_blks.{fusion_blk_subindex}.{vit_blk_keyname}'] = v
logger.log('load 2D ViT weight: {}'.format(
f'decoder.vit_decoder.blocks.{fusion_blk_index}.vit_blks.{fusion_blk_subindex}.{vit_blk_keyname}'
))
else:
logger.log(
'!!!! ignore key, not in the model_state_dict: ',
k, ": ", v.size())
logger.log('model loading finished')
if submodule_name != '':
getattr(self.rec_model,
submodule_name).load_state_dict(model_state_dict,
strict=True)
else:
self.rec_model.load_state_dict(model_state_dict,
strict=False)
# strict=True)
if dist_util.get_world_size() > 1:
# dist_util.sync_params(self.model.named_parameters())
dist_util.sync_params(self.rec_model.parameters())
logger.log('synced params')
def _load_ema_parameters(self,
rate,
model=None,
mp_trainer=None,
model_name='ddpm'):
if mp_trainer is None:
mp_trainer = self.mp_trainer_rec
if model is None:
model = self.rec_model
ema_params = copy.deepcopy(mp_trainer.master_params)
# main_checkpoint, _ = find_resume_checkpoint(
# self.resume_checkpoint, model_name) or self.resume_checkpoint
main_checkpoint = self.resume_checkpoint
ema_checkpoint = find_ema_checkpoint(main_checkpoint, self.resume_step,
rate, model_name)
if ema_checkpoint and model_name == 'ddpm':
if dist_util.get_rank() == 0:
if not Path(ema_checkpoint).exists():
logger.log(
f"failed to load EMA from checkpoint: {ema_checkpoint}, not exist"
)
return
logger.log(f"loading EMA from checkpoint: {ema_checkpoint}...")
map_location = {
'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank()
} # configure map_location properly
state_dict = dist_util.load_state_dict(
ema_checkpoint, map_location=map_location)
model_ema_state_dict = model.state_dict()
for k, v in state_dict.items():
if k in model_ema_state_dict.keys() and v.size(
) == model_ema_state_dict[k].size():
model_ema_state_dict[k] = v
elif 'IN' in k and getattr(model, 'decomposed_IN', False):
model_ema_state_dict[k.replace(
'IN', 'IN.IN')] = v # decomposed IN
else:
logger.log('ignore key: ', k, ": ", v.size())
ema_params = mp_trainer.state_dict_to_master_params(
model_ema_state_dict)
del state_dict
# logger.log('ema mark 3, ', model_name, )
# ! debugging, remove to check which key fails.
if dist_util.get_world_size() > 1:
dist_util.sync_params(ema_params)
# logger.log('ema mark 4, ', model_name, )
# del ema_params
return ema_params
def _load_optimizer_state(self):
main_checkpoint, _ = find_resume_checkpoint() or self.resume_checkpoint
opt_checkpoint = bf.join(bf.dirname(main_checkpoint),
f"opt{self.resume_step:06}.pt")
if bf.exists(opt_checkpoint):
logger.log(
f"loading optimizer state from checkpoint: {opt_checkpoint}")
map_location = {
'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank()
} # configure map_location properly
state_dict = dist_util.load_state_dict(opt_checkpoint,
map_location=map_location)
self.opt.load_state_dict(state_dict)
# self.opt.load_state_dict({k: v for k, v in state_dict.items() if k in self.opt.state_dict()})
del state_dict
def run_loop(self, batch=None):
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# batch, cond = next(self.data)
# if batch is None:
if isinstance(self.data, list):
if self.step <= self.data[2]:
batch = next(self.data[1])
else:
batch = next(self.data[0])
else:
batch = next(self.data)
# batch = next(self.data)
if self.novel_view_poses is None:
self.novel_view_poses = th.roll(batch['c'], 1, 0).to(
dist_util.dev()) # save for eval visualization use
self.run_step(batch)
if self.step % 1000 == 0:
dist_util.synchronize()
th.cuda.empty_cache() # avoid memory leak
if self.step % self.log_interval == 0 and dist_util.get_rank(
) == 0:
out = logger.dumpkvs()
# * log to tensorboard
for k, v in out.items():
self.writer.add_scalar(f'Loss/{k}', v,
self.step + self.resume_step)
if self.step % self.eval_interval == 0 and self.step != 0:
# if self.step % self.eval_interval == 0 and (self.step +
# self.resume_step) != 0:
# if self.step % self.eval_interval == 0: # ! for debugging
# if self.step % self.eval_interval == 0:
if dist_util.get_rank() == 0:
try:
self.eval_loop()
except Exception as e:
logger.log(e)
# self.eval_novelview_loop()
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
if self.step % self.save_interval == 0 and self.step != 0:
self.save()
dist_util.synchronize()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST",
"") and self.step > 0:
return
self.step += 1
if self.step > self.iterations:
logger.log('reached maximum iterations, exiting')
# Save the last checkpoint if it wasn't already saved.
if (self.step -
1) % self.save_interval != 0 and self.step != 1:
self.save()
exit()
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0 and self.step != 1:
self.save()
@th.no_grad()
def eval_loop(self):
raise NotImplementedError('')
def run_step(self, batch, *args):
self.forward_backward(batch)
took_step = self.mp_trainer_rec.optimize(self.opt)
if took_step:
self._update_ema()
self._anneal_lr()
self.log_step()
def forward_backward(self, batch, *args, **kwargs):
# th.cuda.empty_cache()
raise NotImplementedError('')
def _update_ema(self):
for rate, params in zip(self.ema_rate, self.ema_params):
update_ema(params, self.mp_trainer_rec.master_params, rate=rate)
def _anneal_lr(self):
if not self.lr_anneal_steps:
return
frac_done = (self.step + self.resume_step) / self.lr_anneal_steps
lr = self.lr * (1 - frac_done)
for param_group in self.opt.param_groups:
param_group["lr"] = lr
def log_step(self):
logger.logkv("step", self.step + self.resume_step)
logger.logkv("samples",
(self.step + self.resume_step + 1) * self.global_batch)
def save(self):
def save_checkpoint(rate, params):
state_dict = self.mp_trainer_rec.master_params_to_state_dict(
params)
if dist_util.get_rank() == 0:
logger.log(f"saving model {rate}...")
if not rate:
filename = f"model_rec{(self.step+self.resume_step):07d}.pt"
else:
filename = f"ema_{rate}_{(self.step+self.resume_step):07d}.pt"
with bf.BlobFile(bf.join(get_blob_logdir(), filename),
"wb") as f:
th.save(state_dict, f)
save_checkpoint(
0, self.mp_trainer_rec.master_params) # avoid OOM when saving ckpt
for rate, params in zip(self.ema_rate, self.ema_params):
save_checkpoint(rate, params)
th.cuda.empty_cache()
dist.barrier()
class TrainLoop3DRec(TrainLoopBasic):
def __init__(
self,
*,
rec_model,
loss_class,
# diffusion,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=1e-3,
# schedule_sampler=None,
weight_decay=0.0,
lr_anneal_steps=0,
iterations=10001,
load_submodule_name='',
ignore_resume_opt=False,
model_name='rec',
use_amp=False,
compile=False,
**kwargs):
super().__init__(rec_model=rec_model,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
load_submodule_name=load_submodule_name,
ignore_resume_opt=ignore_resume_opt,
model_name=model_name,
use_amp=use_amp,
compile=compile,
**kwargs)
# self.rec_model = self.ddp_model
# self._prepare_nvs_pose() # for eval novelview visualization
self.triplane_scaling_divider = 1.0
self.latent_name = 'latent_normalized_2Ddiffusion' # normalized triplane latent
self.render_latent_behaviour = 'decode_after_vae' # directly render using triplane operations
th.cuda.empty_cache()
@th.inference_mode()
def render_video_given_triplane(self,
planes,
rec_model,
name_prefix='0',
save_img=False,
render_reference=None,
save_mesh=False):
planes *= self.triplane_scaling_divider # if setting clip_denoised=True, the sampled planes will lie in [-1,1]. Thus, values beyond [+- std] will be abandoned in this version. Move to IN for later experiments.
# sr_w_code = getattr(self.ddp_rec_model.module.decoder, 'w_avg', None)
# sr_w_code = None
batch_size = planes.shape[0]
# if sr_w_code is not None:
# sr_w_code = sr_w_code.reshape(1, 1,
# -1).repeat_interleave(batch_size, 0)
# used during diffusion sampling inference
# if not save_img:
# ! mesh
if planes.shape[1] == 16: # ffhq/car
ddpm_latent = {
self.latent_name: planes[:, :12],
'bg_plane': planes[:, 12:16],
}
else:
ddpm_latent = {
self.latent_name: planes,
}
ddpm_latent.update(
rec_model(latent=ddpm_latent,
behaviour='decode_after_vae_no_render'))
# if export_mesh:
# if True:
if save_mesh: # ! tune marching cube grid size according to the vram size
# mesh_size = 512
# mesh_size = 256
mesh_size = 192
mesh_thres = 10 # TODO, requires tuning
import mcubes
import trimesh
dump_path = f'{logger.get_dir()}/mesh/'
os.makedirs(dump_path, exist_ok=True)
grid_out = rec_model(
latent=ddpm_latent,
grid_size=mesh_size,
behaviour='triplane_decode_grid',
)
vtx, faces = mcubes.marching_cubes(
grid_out['sigma'].squeeze(0).squeeze(-1).cpu().numpy(),
mesh_thres)
grid_scale = [rec_model.module.decoder.rendering_kwargs['sampler_bbox_min'], rec_model.module.decoder.rendering_kwargs['sampler_bbox_max']]
vtx = (vtx / (mesh_size-1) * 2 - 1 ) * grid_scale[1] # normalize to g-buffer objav dataset scale
# ! save normalized color to the vertex
# vtx_tensor = th.tensor(vtx, dtype=th.float32, device=dist_util.dev()).unsqueeze(0)
# vtx_colors = rec_model.module.decoder.forward_points(ddpm_latent['latent_after_vit'], vtx_tensor)['rgb'].squeeze(0).cpu().numpy() # (0, 1)
# vtx_colors = (vtx_colors.clip(0,1) * 255).astype(np.uint8)
# mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces)
# mesh = trimesh.Trimesh(
# vertices=vtx,
# faces=faces,
# )
mesh_dump_path = os.path.join(dump_path, f'{name_prefix}.ply')
mesh.export(mesh_dump_path, 'ply')
print(f"Mesh dumped to {dump_path}")
del grid_out, mesh
th.cuda.empty_cache()
# return
video_out = imageio.get_writer(
f'{logger.get_dir()}/triplane_{name_prefix}.mp4',
mode='I',
fps=15,
codec='libx264')
if planes.shape[1] == 16: # ffhq/car
ddpm_latent = {
self.latent_name: planes[:, :12],
'bg_plane': planes[:, 12:16],
}
else:
ddpm_latent = {
self.latent_name: planes,
}
ddpm_latent.update(
rec_model(latent=ddpm_latent,
behaviour='decode_after_vae_no_render'))
# planes = planes.repeat_interleave(micro['c'].shape[0], 0)
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
# micro_batchsize = 2
# micro_batchsize = batch_size
if render_reference is None:
render_reference = self.eval_data # compat
else: # use train_traj
for key in ['ins', 'bbox', 'caption']:
if key in render_reference:
render_reference.pop(key)
# render_reference.pop('bbox')
# render_reference.pop('caption')
# compat lst for enumerate
render_reference = [{
k: v[idx:idx + 1]
for k, v in render_reference.items()
} for idx in range(render_reference['c'].shape[0])]
# for i, batch in enumerate(tqdm(self.eval_data)):
for i, batch in enumerate(tqdm(render_reference)):
micro = {
k: v.to(dist_util.dev()) if isinstance(v, th.Tensor) else v
for k, v in batch.items()
}
# micro = {'c': batch['c'].to(dist_util.dev()).repeat_interleave(batch_size, 0)}
# all_pred = []
pred = rec_model(
img=None,
c=micro['c'],
latent=ddpm_latent,
# latent={
# # k: v.repeat_interleave(micro['c'].shape[0], 0) if v is not None else None
# k: v.repeat_interleave(micro['c'].shape[0], 0) if v is not None else None
# for k, v in ddpm_latent.items()
# },
behaviour='triplane_dec')
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
# save viridis_r depth
pred_depth = pred_depth.cpu()[0].permute(1, 2, 0).numpy()
pred_depth = (plt.cm.viridis(pred_depth[..., 0])[..., :3]) * 2 - 1
pred_depth = th.from_numpy(pred_depth).to(
pred['image_raw'].device).permute(2, 0, 1).unsqueeze(0)
# st()
# pred_depth =
if 'image_sr' in pred:
gen_img = pred['image_sr']
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), gen_img,
self.pool_512(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
elif pred['image_sr'].shape[-1] == 128:
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']), pred['image_sr'],
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
gen_img = pred['image_raw']
pred_vis = th.cat(
[
gen_img,
pred_depth
],
dim=-1) # B, 3, H, W
if save_img:
for batch_idx in range(gen_img.shape[0]):
sampled_img = Image.fromarray(
(gen_img[batch_idx].permute(1, 2, 0).cpu().numpy() *
127.5 + 127.5).clip(0, 255).astype(np.uint8))
if sampled_img.size != (512, 512):
sampled_img = sampled_img.resize(
(128, 128), Image.HAMMING) # for shapenet
sampled_img.save(logger.get_dir() +
'/FID_Cals/{}_{}.png'.format(
int(name_prefix) * batch_size +
batch_idx, i))
# print('FID_Cals/{}_{}.png'.format(int(name_prefix)*batch_size+batch_idx, i))
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
# if vis.shape[0] > 1:
# vis = np.concatenate(np.split(vis, vis.shape[0], axis=0),
# axis=-3)
# if not save_img:
for j in range(vis.shape[0]
): # ! currently only export one plane at a time
video_out.append_data(vis[j])
# if not save_img:
video_out.close()
del video_out
print('logged video to: ',
f'{logger.get_dir()}/triplane_{name_prefix}.mp4')
del vis, pred_vis, micro, pred,
def _init_optim_groups(self, kwargs):
if kwargs.get('decomposed', False): # AE
optim_groups = [
# vit encoder
{
'name': 'encoder',
'params': self.mp_trainer_rec.model.encoder.parameters(),
'lr': kwargs['encoder_lr'],
'weight_decay': kwargs['encoder_weight_decay']
},
# vit decoder backbone
{
'name':
'decoder.vit_decoder',
'params':
self.mp_trainer_rec.model.decoder.vit_decoder.parameters(),
'lr':
kwargs['vit_decoder_lr'],
'weight_decay':
kwargs['vit_decoder_wd']
},
# triplane decoder, may include bg synthesis network
{
'name':
'decoder.triplane_decoder',
'params':
self.mp_trainer_rec.model.decoder.triplane_decoder.
parameters(),
'lr':
kwargs['triplane_decoder_lr'],
# 'weight_decay': self.weight_decay
},
]
if self.mp_trainer_rec.model.decoder.superresolution is not None:
optim_groups.append({
'name':
'decoder.superresolution',
'params':
self.mp_trainer_rec.model.decoder.superresolution.
parameters(),
'lr':
kwargs['super_resolution_lr'],
})
if self.mp_trainer_rec.model.dim_up_mlp is not None:
optim_groups.append({
'name':
'dim_up_mlp',
'params':
self.mp_trainer_rec.model.dim_up_mlp.parameters(),
'lr':
kwargs['encoder_lr'],
# 'weight_decay':
# self.weight_decay
})
# add 3D aware operators
if self.mp_trainer_rec.model.decoder.decoder_pred_3d is not None:
optim_groups.append({
'name':
'decoder_pred_3d',
'params':
self.mp_trainer_rec.model.decoder.decoder_pred_3d.
parameters(),
'lr':
kwargs['vit_decoder_lr'],
'weight_decay':
kwargs['vit_decoder_wd']
})
if self.mp_trainer_rec.model.decoder.transformer_3D_blk is not None:
optim_groups.append({
'name':
'decoder_transformer_3D_blk',
'params':
self.mp_trainer_rec.model.decoder.transformer_3D_blk.
parameters(),
'lr':
kwargs['vit_decoder_lr'],
'weight_decay':
kwargs['vit_decoder_wd']
})
if self.mp_trainer_rec.model.decoder.logvar is not None:
optim_groups.append({
'name':
'decoder_logvar',
'params':
self.mp_trainer_rec.model.decoder.logvar,
'lr':
kwargs['vit_decoder_lr'],
'weight_decay':
kwargs['vit_decoder_wd']
})
if self.mp_trainer_rec.model.decoder.decoder_pred is not None:
optim_groups.append(
# MLP triplane SR
{
'name':
'decoder.decoder_pred',
'params':
self.mp_trainer_rec.model.decoder.decoder_pred.
parameters(),
'lr':
kwargs['vit_decoder_lr'],
# 'weight_decay': 0
'weight_decay':
kwargs['vit_decoder_wd']
}, )
if self.mp_trainer_rec.model.confnet is not None:
optim_groups.append({
'name':
'confnet',
'params':
self.mp_trainer_rec.model.confnet.parameters(),
'lr':
1e-5, # as in unsup3d
})
# self.opt = AdamW(optim_groups)
if dist_util.get_rank() == 0:
logger.log('using independent optimizer for each components')
else:
optim_groups = [
dict(name='mp_trainer.master_params',
params=self.mp_trainer_rec.master_params,
lr=self.lr,
weight_decay=self.weight_decay)
]
logger.log(optim_groups)
return optim_groups
@th.no_grad()
# def eval_loop(self, c_list:list):
def eval_novelview_loop(self):
# novel view synthesis given evaluation camera trajectory
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}.mp4',
mode='I',
fps=60,
codec='libx264')
all_loss_dict = []
novel_view_micro = {}
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
for i, batch in enumerate(tqdm(self.eval_data)):
# for i in range(0, 8, self.microbatch):
# c = c_list[i].to(dist_util.dev()).reshape(1, -1)
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
if i == 0:
novel_view_micro = {
k:
v[0:1].to(dist_util.dev()).repeat_interleave(
micro['img'].shape[0], 0)
if isinstance(v, th.Tensor) else v[0:1]
for k, v in batch.items()
}
else:
# if novel_view_micro['c'].shape[0] < micro['img'].shape[0]:
novel_view_micro = {
k:
v[0:1].to(dist_util.dev()).repeat_interleave(
micro['img'].shape[0], 0)
for k, v in novel_view_micro.items()
}
pred = self.rec_model(img=novel_view_micro['img_to_encoder'],
c=micro['c']) # pred: (B, 3, 64, 64)
# target = {
# 'img': micro['img'],
# 'depth': micro['depth'],
# 'depth_mask': micro['depth_mask']
# }
# targe
_, loss_dict = self.loss_class(pred, micro, test_mode=True)
all_loss_dict.append(loss_dict)
# ! move to other places, add tensorboard
# pred_vis = th.cat([
# pred['image_raw'],
# -pred['image_depth'].repeat_interleave(3, dim=1)
# ],
# dim=-1)
# normalize depth
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), pred['image_sr'],
self.pool_512(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
elif pred['image_sr'].shape[-1] == 256:
pred_vis = th.cat([
micro['img_sr'],
self.pool_256(pred['image_raw']), pred['image_sr'],
self.pool_256(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']),
self.pool_128(pred['image_sr']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
# pred_vis = th.cat([
# self.pool_64(micro['img']), pred['image_raw'],
# pred_depth.repeat_interleave(3, dim=1)
# ],
# dim=-1) # B, 3, H, W
pred_vis = th.cat([
self.pool_128(micro['img']),
self.pool_128(pred['image_raw']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
for j in range(vis.shape[0]):
video_out.append_data(vis[j])
video_out.close()
val_scores_for_logging = calc_average_loss(all_loss_dict)
with open(os.path.join(logger.get_dir(), 'scores_novelview.json'),
'a') as f:
json.dump({'step': self.step, **val_scores_for_logging}, f)
# * log to tensorboard
for k, v in val_scores_for_logging.items():
self.writer.add_scalar(f'Eval/NovelView/{k}', v,
self.step + self.resume_step)
del video_out
# del pred_vis
# del pred
th.cuda.empty_cache()
# @th.no_grad()
# def eval_loop(self, c_list:list):
@th.inference_mode()
def eval_loop(self):
# novel view synthesis given evaluation camera trajectory
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_{self.step+self.resume_step}.mp4',
mode='I',
fps=60,
codec='libx264')
all_loss_dict = []
self.rec_model.eval()
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
for i, batch in enumerate(tqdm(self.eval_data)):
# for i in range(0, 8, self.microbatch):
# c = c_list[i].to(dist_util.dev()).reshape(1, -1)
micro = {
k: v.to(dist_util.dev()) if isinstance(v, th.Tensor) else v
for k, v in batch.items()
}
pred = self.rec_model(img=micro['img_to_encoder'],
c=micro['c']) # pred: (B, 3, 64, 64)
# target = {
# 'img': micro['img'],
# 'depth': micro['depth'],
# 'depth_mask': micro['depth_mask']
# }
# if last_batch or not self.use_ddp:
# loss, loss_dict = self.loss_class(pred, target)
# else:
# with self.ddp_model.no_sync(): # type: ignore
_, loss_dict = self.loss_class(pred, micro, test_mode=True)
all_loss_dict.append(loss_dict)
# ! move to other places, add tensorboard
# gt_vis = th.cat([micro['img'], micro['img']], dim=-1) # TODO, fail to load depth. range [0, 1]
# pred_vis = th.cat([
# pred['image_raw'],
# -pred['image_depth'].repeat_interleave(3, dim=1)
# ],
# dim=-1)
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(1,2,0).cpu().numpy() # ! pred in range[-1, 1]
# normalize depth
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), pred['image_sr'],
self.pool_512(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
elif pred['image_sr'].shape[-1] == 256:
pred_vis = th.cat([
micro['img_sr'],
self.pool_256(pred['image_raw']), pred['image_sr'],
self.pool_256(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']),
self.pool_128(pred['image_sr']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
self.pool_128(micro['img']),
self.pool_128(pred['image_raw']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
for j in range(vis.shape[0]):
video_out.append_data(vis[j])
video_out.close()
val_scores_for_logging = calc_average_loss(all_loss_dict)
with open(os.path.join(logger.get_dir(), 'scores.json'), 'a') as f:
json.dump({'step': self.step, **val_scores_for_logging}, f)
# * log to tensorboard
for k, v in val_scores_for_logging.items():
self.writer.add_scalar(f'Eval/Rec/{k}', v,
self.step + self.resume_step)
th.cuda.empty_cache()
# if 'SuperresolutionHybrid8X' in self.rendering_kwargs: # ffhq/afhq
# self.eval_novelview_loop_trajectory()
# else:
self.eval_novelview_loop()
self.rec_model.train()
@th.inference_mode()
def eval_novelview_loop_trajectory(self):
# novel view synthesis given evaluation camera trajectory
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
for i, batch in enumerate(tqdm(self.eval_data)):
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}_batch_{i}.mp4',
mode='I',
fps=60,
codec='libx264')
for idx, c in enumerate(self.all_nvs_params):
pred = self.rec_model(img=micro['img_to_encoder'],
c=c.unsqueeze(0).repeat_interleave(
micro['img'].shape[0],
0)) # pred: (B, 3, 64, 64)
# c=micro['c']) # pred: (B, 3, 64, 64)
# normalize depth
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), pred['image_sr'],
self.pool_512(pred_depth).repeat_interleave(3,
dim=1)
],
dim=-1)
elif pred['image_sr'].shape[-1] == 256:
pred_vis = th.cat([
micro['img_sr'],
self.pool_256(pred['image_raw']), pred['image_sr'],
self.pool_256(pred_depth).repeat_interleave(3,
dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']),
self.pool_128(pred['image_sr']),
self.pool_128(pred_depth).repeat_interleave(3,
dim=1)
],
dim=-1)
else:
# st()
pred_vis = th.cat([
self.pool_128(micro['img']),
self.pool_128(pred['image_raw']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
# ! cooncat h dim
pred_vis = pred_vis.permute(0, 2, 3, 1).flatten(0,
1) # H W 3
# vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
# vis = pred_vis.permute(1,2,0).cpu().numpy()
vis = pred_vis.cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
# for j in range(vis.shape[0]):
# video_out.append_data(vis[j])
video_out.append_data(vis)
video_out.close()
th.cuda.empty_cache()
def _prepare_nvs_pose(self):
device = dist_util.dev()
fov_deg = 18.837 # for ffhq/afhq
intrinsics = FOV_to_intrinsics(fov_deg, device=device)
all_nvs_params = []
pitch_range = 0.25
yaw_range = 0.35
num_keyframes = 10 # how many nv poses to sample from
w_frames = 1
cam_pivot = th.Tensor(
self.rendering_kwargs.get('avg_camera_pivot')).to(device)
cam_radius = self.rendering_kwargs.get('avg_camera_radius')
for frame_idx in range(num_keyframes):
cam2world_pose = LookAtPoseSampler.sample(
3.14 / 2 + yaw_range * np.sin(2 * 3.14 * frame_idx /
(num_keyframes * w_frames)),
3.14 / 2 - 0.05 +
pitch_range * np.cos(2 * 3.14 * frame_idx /
(num_keyframes * w_frames)),
cam_pivot,
radius=cam_radius,
device=device)
camera_params = th.cat(
[cam2world_pose.reshape(-1, 16),
intrinsics.reshape(-1, 9)], 1)
all_nvs_params.append(camera_params)
self.all_nvs_params = th.cat(all_nvs_params, 0)
def forward_backward(self, batch, *args, **kwargs):
# th.cuda.empty_cache()
self.mp_trainer_rec.zero_grad()
batch_size = batch['img_to_encoder'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev())
for k, v in batch.items()
}
last_batch = (i + self.microbatch) >= batch_size
# wrap forward within amp
with th.autocast(device_type='cuda',
dtype=th.float16,
enabled=self.mp_trainer_rec.use_amp):
pred = self.rec_model(img=micro['img_to_encoder'],
c=micro['c']) # pred: (B, 3, 64, 64)
target = micro
# ! only enable in ffhq dataset
conf_sigma_percl = None
conf_sigma_percl_flip = None
if 'conf_sigma' in pred:
# all_conf_sigma_l1, all_conf_sigma_percl = pred['conf_sigma']
# all_conf_sigma_l1 = pred['conf_sigma']
all_conf_sigma_l1 = th.nn.functional.interpolate(
pred['conf_sigma'],
size=pred['image_raw'].shape[-2:],
mode='bilinear'
) # dynamically resize to target img size
conf_sigma_l1 = all_conf_sigma_l1[:, :1]
conf_sigma_l1_flip = all_conf_sigma_l1[:, 1:]
# conf_sigma_percl = all_conf_sigma_percl[:,:1]
# conf_sigma_percl_flip = all_conf_sigma_percl[:,1:]
else:
conf_sigma = None
conf_sigma_l1 = None
conf_sigma_l1_flip = None
with self.rec_model.no_sync(): # type: ignore
loss, loss_dict, fg_mask = self.loss_class(
pred,
target,
step=self.step + self.resume_step,
test_mode=False,
return_fg_mask=True,
conf_sigma_l1=conf_sigma_l1,
conf_sigma_percl=conf_sigma_percl)
if self.loss_class.opt.symmetry_loss:
loss_dict['conf_sigma_log'] = conf_sigma_l1.log()
pose, intrinsics = micro['c'][:, :16].reshape(
-1, 4, 4), micro['c'][:, 16:]
flipped_pose = flip_yaw(pose)
mirror_c = th.cat(
[flipped_pose.reshape(-1, 16), intrinsics], -1)
nvs_pred = self.rec_model(latent={
k: v
for k, v in pred.items() if 'latent' in k
},
c=mirror_c,
behaviour='triplane_dec',
return_raw_only=True)
# concat data for supervision
nvs_gt = {
k: th.flip(target[k], [-1])
for k in
['img'] # fliplr leads to wrong color; B 3 H W shape
}
flipped_fg_mask = th.flip(fg_mask, [-1])
# if 'conf_sigma' in pred:
# conf_sigma = th.flip(pred['conf_sigma'], [-1])
# conf_sigma = th.nn.AdaptiveAvgPool2d(fg_mask.shape[-2:])(conf_sigma) # dynamically resize to target img size
# else:
# conf_sigma=None
with self.rec_model.no_sync(): # type: ignore
loss_symm, loss_dict_symm = self.loss_class.calc_2d_rec_loss(
nvs_pred['image_raw'],
nvs_gt['img'],
flipped_fg_mask,
# test_mode=True,
test_mode=False,
step=self.step + self.resume_step,
# conf_sigma=conf_sigma,
conf_sigma_l1=conf_sigma_l1_flip,
conf_sigma_percl=conf_sigma_percl_flip)
# )
loss += (loss_symm * 1.0) # as in unsup3d
# loss += (loss_symm * 0.5) # as in unsup3d
# loss += (loss_symm * 0.01) # as in unsup3d
# if conf_sigma is not None:
# loss += th.nn.functional.mse_loss(conf_sigma, flipped_fg_mask) * 0.001 # a log that regularizes all confidence to 1
for k, v in loss_dict_symm.items():
loss_dict[f'{k}_symm'] = v
loss_dict[
'flip_conf_sigma_log'] = conf_sigma_l1_flip.log()
# ! add density-reg in eg3d, tv-loss
if self.loss_class.opt.density_reg > 0 and self.step % self.loss_class.opt.density_reg_every == 0:
initial_coordinates = th.rand(
(batch_size, 1000, 3),
device=dist_util.dev()) * 2 - 1 # [-1, 1]
perturbed_coordinates = initial_coordinates + th.randn_like(
initial_coordinates
) * self.loss_class.opt.density_reg_p_dist
all_coordinates = th.cat(
[initial_coordinates, perturbed_coordinates], dim=1)
sigma = self.rec_model(
latent=pred['latent'],
coordinates=all_coordinates,
directions=th.randn_like(all_coordinates),
behaviour='triplane_renderer',
)['sigma']
sigma_initial = sigma[:, :sigma.shape[1] // 2]
sigma_perturbed = sigma[:, sigma.shape[1] // 2:]
TVloss = th.nn.functional.l1_loss(
sigma_initial,
sigma_perturbed) * self.loss_class.opt.density_reg
loss_dict.update(dict(tv_loss=TVloss))
loss += TVloss
self.mp_trainer_rec.backward(loss)
log_rec3d_loss_dict(loss_dict)
# for name, p in self.rec_model.named_parameters():
# if p.grad is None:
# logger.log(f"found rec unused param: {name}")
if dist_util.get_rank() == 0 and self.step % 500 == 0:
with th.no_grad():
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)
def norm_depth(pred_depth): # to [-1,1]
# pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
return -(pred_depth * 2 - 1)
pred_img = pred['image_raw']
gt_img = micro['img']
# infer novel view also
if self.loss_class.opt.symmetry_loss:
pred_nv_img = nvs_pred
else:
pred_nv_img = self.rec_model(
img=micro['img_to_encoder'],
c=self.novel_view_poses) # pred: (B, 3, 64, 64)
# if 'depth' in micro:
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = norm_depth(gt_depth)
# gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
# gt_depth.min())
# if True:
fg_mask = pred['image_mask'] * 2 - 1 # 0-1
nv_fg_mask = pred_nv_img['image_mask'] * 2 - 1 # 0-1
if 'image_depth' in pred:
pred_depth = norm_depth(pred['image_depth'])
pred_nv_depth = norm_depth(pred_nv_img['image_depth'])
else:
pred_depth = th.zeros_like(gt_depth)
pred_nv_depth = th.zeros_like(gt_depth)
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_img = th.cat(
[self.pool_512(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
gt_depth = self.pool_512(gt_depth)
elif pred['image_sr'].shape[-1] == 256:
pred_img = th.cat(
[self.pool_256(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_256(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_256(pred_depth)
gt_depth = self.pool_256(gt_depth)
else:
pred_img = th.cat(
[self.pool_128(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_128(micro['img']), micro['img_sr']],
dim=-1)
gt_depth = self.pool_128(gt_depth)
pred_depth = self.pool_128(pred_depth)
else:
gt_img = self.pool_128(gt_img)
gt_depth = self.pool_128(gt_depth)
pred_vis = th.cat([
pred_img,
pred_depth.repeat_interleave(3, dim=1),
fg_mask.repeat_interleave(3, dim=1),
],
dim=-1) # B, 3, H, W
if 'conf_sigma' in pred:
conf_sigma_l1 = (1 / (conf_sigma_l1 + 1e-7)
).repeat_interleave(3, dim=1) * 2 - 1
pred_vis = th.cat([
pred_vis,
conf_sigma_l1,
], dim=-1) # B, 3, H, W
pred_vis_nv = th.cat([
pred_nv_img['image_raw'],
pred_nv_depth.repeat_interleave(3, dim=1),
nv_fg_mask.repeat_interleave(3, dim=1),
],
dim=-1) # B, 3, H, W
if 'conf_sigma' in pred:
# conf_sigma_for_vis = (1/conf_sigma).repeat_interleave(3, dim=1)
# conf_sigma_for_vis = (conf_sigma_for_vis / conf_sigma_for_vis.max() ) * 2 - 1 # normalize to [-1,1]
conf_sigma_for_vis_flip = (
1 / (conf_sigma_l1_flip + 1e-7)).repeat_interleave(
3, dim=1) * 2 - 1
pred_vis_nv = th.cat(
[
pred_vis_nv,
conf_sigma_for_vis_flip,
# th.cat([conf_sigma_for_vis, flipped_fg_mask*2-1], -1)
],
dim=-1) # B, 3, H, W
pred_vis = th.cat([pred_vis, pred_vis_nv],
dim=-2) # cat in H dim
gt_vis = th.cat(
[
gt_img,
gt_depth.repeat_interleave(3, dim=1),
th.zeros_like(gt_img)
],
dim=-1) # TODO, fail to load depth. range [0, 1]
if 'conf_sigma' in pred:
gt_vis = th.cat([gt_vis, fg_mask],
dim=-1) # placeholder
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
# st()
vis = th.cat([gt_vis, pred_vis], dim=-2)
# .permute(
# 0, 2, 3, 1).cpu()
vis_tensor = torchvision.utils.make_grid(
vis, nrow=vis.shape[-1] // 64) # HWC
torchvision.utils.save_image(
vis_tensor,
f'{logger.get_dir()}/{self.step+self.resume_step}.jpg',
value_range=(-1, 1),
normalize=True)
# vis = vis.numpy() * 127.5 + 127.5
# vis = vis.clip(0, 255).astype(np.uint8)
# Image.fromarray(vis).save(
# f'{logger.get_dir()}/{self.step+self.resume_step}.jpg')
logger.log(
'log vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}.jpg')
# self.writer.add_image(f'images',
# vis,
# self.step + self.resume_step,
# dataformats='HWC')
return pred
class TrainLoop3DTriplaneRec(TrainLoop3DRec):
def __init__(self,
*,
rec_model,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=0.001,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
load_submodule_name='',
ignore_resume_opt=False,
model_name='rec',
use_amp=False,
compile=False,
**kwargs):
super().__init__(rec_model=rec_model,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
load_submodule_name=load_submodule_name,
ignore_resume_opt=ignore_resume_opt,
model_name=model_name,
use_amp=use_amp,
compile=compile,
**kwargs)
@th.inference_mode()
def eval_loop(self):
# novel view synthesis given evaluation camera trajectory
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_{self.step+self.resume_step}.mp4',
mode='I',
fps=60,
codec='libx264')
all_loss_dict = []
self.rec_model.eval()
device = dist_util.dev()
# to get intrinsics
demo_pose = next(self.data)
intrinsics = demo_pose['c'][0][16:25].to(device)
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_{self.step+self.resume_step}.mp4',
mode='I',
fps=24,
bitrate='10M',
codec='libx264')
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
# for i, batch in enumerate(tqdm(self.eval_data)):
cam_pivot = th.tensor([0, 0, 0], device=dist_util.dev())
cam_radius = 1.8
pitch_range = 0.45
yaw_range = 3.14 # 0.35
frames = 72
# TODO, use PanoHead trajectory
# for frame_idx in range(frames):
for pose_idx, (angle_y, angle_p) in enumerate(
# zip(np.linspace(-0.4, 0.4, 72), [-0.2] * 72)):
# zip(np.linspace(-1.57, 1.57, 72), [-1.57] * 72)):
# zip(np.linspace(0,3.14, 72), [0] * 72)): # check canonical pose
zip([0.2] * 72, np.linspace(-3.14, 3.14, 72))):
# cam2world_pose = LookAtPoseSampler.sample(3.14/2 + yaw_range * np.cos(2 * 3.14 * frame_idx / (frames)),
# 3.14/2 -0.05 + pitch_range * np.sin(2 * 3.14 * frame_idx / (frames)),
# cam_pivot,
# radius=cam_radius, device=device)
cam2world_pose = LookAtPoseSampler.sample(
np.pi / 2 + angle_y,
np.pi / 2 + angle_p,
# angle_p,
cam_pivot,
# horizontal_stddev=0.1, # 0.25
# vertical_stddev=0.125, # 0.35,
radius=cam_radius,
device=device)
camera_params = th.cat(
[cam2world_pose.reshape(-1, 16),
intrinsics.reshape(-1, 9)], 1).to(dist_util.dev())
# micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
micro = {'c': camera_params}
pred = self.rec_model(c=micro['c'])
# normalize depth
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
pred_vis = th.cat([
self.pool_128(pred['image_raw']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
for j in range(vis.shape[0]):
video_out.append_data(vis[j])
video_out.close()
self.rec_model.train()
class TrainLoop3DRecTrajVis(TrainLoop3DRec):
def __init__(self,
*,
rec_model,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=0.001,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
load_submodule_name='',
ignore_resume_opt=False,
model_name='rec',
use_amp=False,
**kwargs):
super().__init__(rec_model=rec_model,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
load_submodule_name=load_submodule_name,
ignore_resume_opt=ignore_resume_opt,
model_name=model_name,
use_amp=use_amp,
**kwargs)
self.rendering_kwargs = self.rec_model.module.decoder.triplane_decoder.rendering_kwargs # type: ignore
self._prepare_nvs_pose() # for eval novelview visualization
@th.inference_mode()
def eval_novelview_loop(self):
# novel view synthesis given evaluation camera trajectory
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
for i, batch in enumerate(tqdm(self.eval_data)):
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}_batch_{i}.mp4',
mode='I',
fps=60,
codec='libx264')
for idx, c in enumerate(self.all_nvs_params):
pred = self.rec_model(img=micro['img_to_encoder'],
c=c.unsqueeze(0).repeat_interleave(
micro['img'].shape[0],
0)) # pred: (B, 3, 64, 64)
# c=micro['c']) # pred: (B, 3, 64, 64)
# normalize depth
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), pred['image_sr'],
self.pool_512(pred_depth).repeat_interleave(3,
dim=1)
],
dim=-1)
elif pred['image_sr'].shape[-1] == 256:
pred_vis = th.cat([
micro['img_sr'],
self.pool_256(pred['image_raw']), pred['image_sr'],
self.pool_256(pred_depth).repeat_interleave(3,
dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']),
self.pool_128(pred['image_sr']),
self.pool_128(pred_depth).repeat_interleave(3,
dim=1)
],
dim=-1)
else:
# st()
pred_vis = th.cat([
self.pool_128(micro['img']),
self.pool_128(pred['image_raw']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
# ! cooncat h dim
pred_vis = pred_vis.permute(0, 2, 3, 1).flatten(0,
1) # H W 3
# vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
# vis = pred_vis.permute(1,2,0).cpu().numpy()
vis = pred_vis.cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
# for j in range(vis.shape[0]):
# video_out.append_data(vis[j])
video_out.append_data(vis)
video_out.close()
th.cuda.empty_cache()
def _prepare_nvs_pose(self):
device = dist_util.dev()
fov_deg = 18.837 # for ffhq/afhq
intrinsics = FOV_to_intrinsics(fov_deg, device=device)
all_nvs_params = []
pitch_range = 0.25
yaw_range = 0.35
num_keyframes = 10 # how many nv poses to sample from
w_frames = 1
cam_pivot = th.Tensor(
self.rendering_kwargs.get('avg_camera_pivot')).to(device)
cam_radius = self.rendering_kwargs.get('avg_camera_radius')
for frame_idx in range(num_keyframes):
cam2world_pose = LookAtPoseSampler.sample(
3.14 / 2 + yaw_range * np.sin(2 * 3.14 * frame_idx /
(num_keyframes * w_frames)),
3.14 / 2 - 0.05 +
pitch_range * np.cos(2 * 3.14 * frame_idx /
(num_keyframes * w_frames)),
cam_pivot,
radius=cam_radius,
device=device)
camera_params = th.cat(
[cam2world_pose.reshape(-1, 16),
intrinsics.reshape(-1, 9)], 1)
all_nvs_params.append(camera_params)
self.all_nvs_params = th.cat(all_nvs_params, 0)