LN3Diff_I23D / nsr /train_util_cvD.py
NIRVANALAN
init
11e6f7b
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
import torchvision
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from tqdm import tqdm
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion import dist_util, logger
from guided_diffusion.train_util import (calc_average_loss,
log_rec3d_loss_dict,
find_resume_checkpoint)
from torch.optim import AdamW
from .train_util import TrainLoopBasic, TrainLoop3DRec
import vision_aided_loss
from dnnlib.util import calculate_adaptive_weight
def get_blob_logdir():
# You can change this to be a separate path to save checkpoints to
# a blobstore or some external drive.
return logger.get_dir()
class TrainLoop3DcvD(TrainLoop3DRec):
def __init__(
self,
*,
rec_model,
loss_class,
# diffusion,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=1e-3,
# schedule_sampler=None,
weight_decay=0.0,
lr_anneal_steps=0,
iterations=10001,
load_submodule_name='',
ignore_resume_opt=False,
use_amp=False,
cvD_name='cvD',
model_name='rec',
# SR_TRAINING=True,
SR_TRAINING=False,
**kwargs):
super().__init__(rec_model=rec_model,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
load_submodule_name=load_submodule_name,
ignore_resume_opt=ignore_resume_opt,
model_name=model_name,
use_amp=use_amp,
cvD_name=cvD_name,
**kwargs)
# self.rec_model = self.ddp_model
# device = loss_class.device
device = dist_util.dev()
# * create vision aided model
# TODO, load model
self.nvs_cvD = vision_aided_loss.Discriminator(
cv_type='clip', loss_type='multilevel_sigmoid_s',
device=device).to(device)
self.nvs_cvD.cv_ensemble.requires_grad_(False) # Freeze feature extractor
# self.nvs_cvD.train()
#
# SR_TRAINING = False
cvD_model_params=list(self.nvs_cvD.decoder.parameters())
self.SR_TRAINING = SR_TRAINING
# SR_TRAINING = True
if SR_TRAINING:
# width, patch_size = self.nvs_cvD.cv_ensemble
vision_width, vision_patch_size = [self.nvs_cvD.cv_ensemble.models[0].model.conv1.weight.shape[k] for k in [0, -1]]
self.nvs_cvD.cv_ensemble.models[0].model.conv1 = th.nn.Conv2d(in_channels=6, out_channels=vision_width, kernel_size=vision_patch_size, stride=vision_patch_size, bias=False).to(dist_util.dev())
self.nvs_cvD.cv_ensemble.models[0].model.conv1.requires_grad_(True)
cvD_model_params += list(self.nvs_cvD.cv_ensemble.models[0].model.conv1.parameters())
# change normalization metrics
self.nvs_cvD.cv_ensemble.models[0].image_mean = self.nvs_cvD.cv_ensemble.models[0].image_mean.repeat(2)
self.nvs_cvD.cv_ensemble.models[0].image_std = self.nvs_cvD.cv_ensemble.models[0].image_std.repeat(2)
# logger.log(f'nvs_cvD_model_params: {cvD_model_params}')
self._load_and_sync_parameters(model=self.nvs_cvD, model_name='cvD')
self.mp_trainer_cvD = MixedPrecisionTrainer(
model=self.nvs_cvD,
use_fp16=self.use_fp16,
fp16_scale_growth=fp16_scale_growth,
model_name=cvD_name,
use_amp=use_amp,
model_params=cvD_model_params
)
# cvD_lr = 4e-5*(lr/1e-5)
# cvD_lr = 4e-4*(lr/1e-5)
cvD_lr = 1e-4*(lr/1e-5) * self.loss_class.opt.nvs_D_lr_mul
# cvD_lr = 1e-5*(lr/1e-5)
self.opt_cvD = AdamW(
self.mp_trainer_cvD.master_params,
lr=cvD_lr,
betas=(0, 0.999),
eps=1e-8) # dlr in biggan cfg
logger.log(f'cpt_cvD lr: {cvD_lr}')
if self.use_ddp:
self.ddp_nvs_cvD = DDP(
self.nvs_cvD,
device_ids=[dist_util.dev()],
output_device=dist_util.dev(),
broadcast_buffers=False,
bucket_cap_mb=128,
find_unused_parameters=False,
)
else:
self.ddp_nvs_cvD = self.nvs_cvD
th.cuda.empty_cache()
def run_step(self, batch, step='g_step'):
# self.forward_backward(batch)
if step == 'g_step_rec':
self.forward_G_rec(batch)
took_step_g_rec = self.mp_trainer_rec.optimize(self.opt)
if took_step_g_rec:
self._update_ema() # g_ema
elif step == 'g_step_nvs':
self.forward_G_nvs(batch)
took_step_g_nvs = self.mp_trainer_rec.optimize(self.opt)
if took_step_g_nvs:
self._update_ema() # g_ema
elif step == 'd_step':
self.forward_D(batch)
_ = self.mp_trainer_cvD.optimize(self.opt_cvD)
self._anneal_lr()
self.log_step()
def run_loop(self):
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# batch, cond = next(self.data)
# if batch is None:
batch = next(self.data)
self.run_step(batch, 'g_step_rec')
batch = next(self.data)
self.run_step(batch, 'g_step_nvs')
batch = next(self.data)
self.run_step(batch, 'd_step')
if self.step % self.log_interval == 0 and dist_util.get_rank(
) == 0:
out = logger.dumpkvs()
# * log to tensorboard
for k, v in out.items():
self.writer.add_scalar(f'Loss/{k}', v,
self.step + self.resume_step)
if self.step % self.eval_interval == 0 and self.step != 0:
if dist_util.get_rank() == 0:
self.eval_loop()
# self.eval_novelview_loop()
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
if self.step % self.save_interval == 0:
self.save()
self.save(self.mp_trainer_cvD, 'cvD')
dist_util.synchronize()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST",
"") and self.step > 0:
return
self.step += 1
if self.step > self.iterations:
logger.log('reached maximum iterations, exiting')
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
self.save(self.mp_trainer_cvD, 'cvD')
exit()
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
self.save(self.mp_trainer_cvD, 'cvD')
# def forward_backward(self, batch, *args, **kwargs):
# blur_sigma = max(1 - cur_nimg / (self.blur_fade_kimg * 1e3), 0) * self.blur_init_sigma if self.blur_fade_kimg > 0 else 0
def run_D_Diter(self, real, fake, D=None):
# Dmain: Minimize logits for generated images and maximize logits for real images.
if D is None:
D = self.ddp_nvs_cvD
lossD = D(real, for_real=True).mean() + D(
fake, for_real=False).mean()
return lossD
def forward_D(self, batch): # update D
self.mp_trainer_cvD.zero_grad()
self.ddp_nvs_cvD.requires_grad_(True)
self.rec_model.requires_grad_(False)
batch_size = batch['img'].shape[0]
# * sample a new batch for D training
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
for k, v in batch.items()
}
with th.autocast(device_type='cuda',
dtype=th.float16,
enabled=self.mp_trainer_cvD.use_amp):
# pred = self.rec_model(img=micro['img_to_encoder'],
# c=micro['c']) # pred: (B, 3, 64, 64)
pred = self.rec_model(
img=micro['img_to_encoder'],
c=th.cat([
micro['c'][1:],
micro['c'][:1], # half novel view, half orig view
]))
real_logits_cv = self.run_D_Diter(
real=micro['img_to_encoder'],
fake=pred['image_raw']) # TODO, add SR for FFHQ
log_rec3d_loss_dict({'vision_aided_loss/D': real_logits_cv})
self.mp_trainer_cvD.backward(real_logits_cv)
def forward_G_rec(self, batch): # update G
self.mp_trainer_rec.zero_grad()
self.rec_model.requires_grad_(True)
self.ddp_nvs_cvD.requires_grad_(False)
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
for k, v in batch.items()
}
last_batch = (i + self.microbatch) >= batch_size
# VQ3D novel view d loss
# duplicated_for_nvs = th.cat([
# micro['img_to_encoder'][:batch_size - 2],
# micro['img_to_encoder'][:2]
# ], 0)
with th.autocast(device_type='cuda',
dtype=th.float16,
enabled=self.mp_trainer_rec.use_amp):
pred = self.rec_model(
img=micro['img_to_encoder'], c=micro['c']
) # render novel view for first half of the batch for D loss
target_for_rec = micro
pred_for_rec = pred
# pred_for_rec = {
# k: v[:batch_size - 2] if v is not None else None
# for k, v in pred.items()
# }
# target_for_rec = {
# k: v[:batch_size - 2] if v is not None else None
# for k, v in target.items()
# }
if last_batch or not self.use_ddp:
loss, loss_dict = self.loss_class(pred_for_rec,
target_for_rec,
test_mode=False)
else:
with self.rec_model.no_sync(): # type: ignore
loss, loss_dict = self.loss_class(pred_for_rec,
target_for_rec,
test_mode=False)
# add cvD supervision
vision_aided_loss = self.ddp_nvs_cvD(
pred_for_rec['image_raw'],
for_G=True).mean() # [B, 1] shape
last_layer = self.rec_model.module.decoder.triplane_decoder.decoder.net[ # type: ignore
-1].weight # type: ignore
d_weight = calculate_adaptive_weight(
loss, vision_aided_loss, last_layer,
# disc_weight_max=0.1) * 0.1
# disc_weight_max=0.1) * 0.05
disc_weight_max=1)
loss += vision_aided_loss * d_weight
loss_dict.update({
'vision_aided_loss/G_rec': vision_aided_loss,
'd_weight': d_weight
})
log_rec3d_loss_dict(loss_dict)
self.mp_trainer_rec.backward(loss)
# ! move to other places, add tensorboard
if dist_util.get_rank() == 0 and self.step % 500 == 0:
with th.no_grad():
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
pred_img = pred['image_raw']
gt_img = micro['img']
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_img = th.cat(
[self.pool_512(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
gt_depth = self.pool_512(gt_depth)
elif pred['image_sr'].shape[-1] == 256:
pred_img = th.cat(
[self.pool_256(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_256(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_256(pred_depth)
gt_depth = self.pool_256(gt_depth)
else:
pred_img = th.cat(
[self.pool_128(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_128(micro['img']), micro['img_sr']],
dim=-1)
gt_depth = self.pool_128(gt_depth)
pred_depth = self.pool_128(pred_depth)
gt_vis = th.cat(
[gt_img, gt_depth.repeat_interleave(3, dim=1)],
dim=-1) # TODO, fail to load depth. range [0, 1]
pred_vis = th.cat(
[pred_img,
pred_depth.repeat_interleave(3, dim=1)],
dim=-1) # B, 3, H, W
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
1, 2, 0).cpu() # ! pred in range[-1, 1]
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}_rec.jpg'
)
logger.log(
'log vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}_rec.jpg'
)
def forward_G_nvs(self, batch): # update G
self.mp_trainer_rec.zero_grad()
self.rec_model.requires_grad_(True)
self.ddp_nvs_cvD.requires_grad_(False)
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev()).contiguous()
for k, v in batch.items()
}
# last_batch = (i + self.microbatch) >= batch_size
# VQ3D novel view d loss
# duplicated_for_nvs = th.cat([
# micro['img_to_encoder'][batch_size // 2:],
# micro['img_to_encoder'][:batch_size // 2]
# ], 0)
with th.autocast(device_type='cuda',
dtype=th.float16,
enabled=self.mp_trainer_rec.use_amp):
pred = self.rec_model(
# img=duplicated_for_nvs, c=micro['c']
img=micro['img_to_encoder'],
c=th.cat([
micro['c'][1:],
micro['c'][:1],
])
) # render novel view for first half of the batch for D loss
# add cvD supervision
vision_aided_loss = self.ddp_nvs_cvD(
pred['image_raw'], for_G=True).mean() # [B, 1] shape
# loss = vision_aided_loss * 0.01
# loss = vision_aided_loss * 0.005
# loss = vision_aided_loss * 0.1
loss = vision_aided_loss * 0.01
log_rec3d_loss_dict({
'vision_aided_loss/G_nvs':
vision_aided_loss,
})
self.mp_trainer_rec.backward(loss)
# ! move to other places, add tensorboard
if dist_util.get_rank() == 0 and self.step % 500 == 0:
with th.no_grad():
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
pred_img = pred['image_raw']
gt_img = micro['img']
if 'image_sr' in pred:
pred_img = th.cat(
[self.pool_512(pred_img), pred['image_sr']],
dim=-1)
gt_img = th.cat(
[self.pool_512(micro['img']), micro['img_sr']],
dim=-1)
pred_depth = self.pool_512(pred_depth)
gt_depth = self.pool_512(gt_depth)
gt_vis = th.cat(
[gt_img, gt_depth.repeat_interleave(3, dim=1)],
dim=-1) # TODO, fail to load depth. range [0, 1]
pred_vis = th.cat(
[pred_img,
pred_depth.repeat_interleave(3, dim=1)],
dim=-1) # B, 3, H, W
# vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
# 1, 2, 0).cpu() # ! pred in range[-1, 1]
vis = th.cat([gt_vis, pred_vis], dim=-2)
vis = torchvision.utils.make_grid(
vis,
normalize=True,
scale_each=True,
value_range=(-1, 1)).cpu().permute(1, 2, 0) # H W 3
vis = vis.numpy() * 255
vis = vis.clip(0, 255).astype(np.uint8)
# logger.log(vis.shape)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}_nvs.jpg'
)
logger.log(
'log vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}_nvs.jpg'
)
def save(self, mp_trainer=None, model_name='rec'):
if mp_trainer is None:
mp_trainer = self.mp_trainer_rec
def save_checkpoint(rate, params):
state_dict = mp_trainer.master_params_to_state_dict(params)
if dist_util.get_rank() == 0:
logger.log(f"saving model {model_name} {rate}...")
if not rate:
filename = f"model_{model_name}{(self.step+self.resume_step):07d}.pt"
else:
filename = f"ema_{model_name}_{rate}_{(self.step+self.resume_step):07d}.pt"
with bf.BlobFile(bf.join(get_blob_logdir(), filename),
"wb") as f:
th.save(state_dict, f)
save_checkpoint(0, mp_trainer.master_params)
if model_name == 'ddpm':
for rate, params in zip(self.ema_rate, self.ema_params):
save_checkpoint(rate, params)
dist.barrier()
def _load_and_sync_parameters(self, model=None, model_name='rec'):
resume_checkpoint, self.resume_step = find_resume_checkpoint(
self.resume_checkpoint, model_name) or self.resume_checkpoint
if model is None:
model = self.rec_model # default model in the parent class
logger.log(resume_checkpoint)
if resume_checkpoint and Path(resume_checkpoint).exists():
if dist_util.get_rank() == 0:
logger.log(
f"loading model from checkpoint: {resume_checkpoint}...")
map_location = {
'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank()
} # configure map_location properly
logger.log(f'mark {model_name} loading ', )
resume_state_dict = dist_util.load_state_dict(
resume_checkpoint, map_location=map_location)
logger.log(f'mark {model_name} loading finished', )
model_state_dict = model.state_dict()
for k, v in resume_state_dict.items():
if k in model_state_dict.keys() and v.size(
) == model_state_dict[k].size():
model_state_dict[k] = v
# elif 'IN' in k and model_name == 'rec' and getattr(model.decoder, 'decomposed_IN', False):
# model_state_dict[k.replace('IN', 'superresolution.norm.norm_layer')] = v # decomposed IN
elif 'attn.wk' in k or 'attn.wv' in k: # old qkv
logger.log('ignore ', k)
elif 'decoder.vit_decoder.blocks' in k:
# st()
# load from 2D ViT pre-trained into 3D ViT blocks.
assert len(model.decoder.vit_decoder.blocks[0].vit_blks) == 2 # assert depth=2 here.
fusion_ca_depth = len(model.decoder.vit_decoder.blocks[0].vit_blks)
vit_subblk_index = int(k.split('.')[3])
vit_blk_keyname = ('.').join(k.split('.')[4:])
fusion_blk_index = vit_subblk_index // fusion_ca_depth
fusion_blk_subindex = vit_subblk_index % fusion_ca_depth
model_state_dict[f'decoder.vit_decoder.blocks.{fusion_blk_index}.vit_blks.{fusion_blk_subindex}.{vit_blk_keyname}'] = v
# logger.log('load 2D ViT weight: {}'.format(f'decoder.vit_decoder.blocks.{fusion_blk_index}.vit_blks.{fusion_blk_subindex}.{vit_blk_keyname}'))
elif 'IN' in k:
logger.log('ignore ', k)
elif 'quant_conv' in k:
logger.log('ignore ', k)
else:
logger.log('!!!! ignore key: ', k, ": ", v.size(),)
if k in model_state_dict:
logger.log('shape in model: ', model_state_dict[k].size())
else:
logger.log(k, 'not in model_state_dict')
model.load_state_dict(model_state_dict, strict=True)
del model_state_dict
if dist_util.get_world_size() > 1:
dist_util.sync_params(model.parameters())
logger.log(f'synced {model_name} params')