LN3Diff_I23D / nsr /train_util_diffusion.py
NIRVANALAN
update
8e4a17a
import copy
import functools
import json
import os
from pathlib import Path
from pdb import set_trace as st
# from PIL import Image
import blobfile as bf
import imageio
import numpy as np
import torch as th
import torch.distributed as dist
import torchvision
from PIL import Image
from torch.nn.parallel.distributed import DistributedDataParallel as DDP
from torch.optim import AdamW
from torch.utils.tensorboard.writer import SummaryWriter
from tqdm import tqdm
import matplotlib.pyplot as plt
from safetensors.torch import load_file
from guided_diffusion.gaussian_diffusion import _extract_into_tensor
from guided_diffusion import dist_util, logger
from guided_diffusion.fp16_util import MixedPrecisionTrainer
from guided_diffusion.nn import update_ema
from guided_diffusion.resample import LossAwareSampler, UniformSampler
# from .train_util import TrainLoop3DRec
from guided_diffusion.train_util import (TrainLoop, calc_average_loss,
find_ema_checkpoint,
find_resume_checkpoint,
get_blob_logdir, log_loss_dict,
log_rec3d_loss_dict,
parse_resume_step_from_filename)
import dnnlib
from nsr.camera_utils import FOV_to_intrinsics, LookAtPoseSampler
from huggingface_hub import hf_hub_download
# AMP
# from accelerate import Accelerator
# from ..guided_diffusion.train_util import TrainLoop
# use_amp = False
# use_amp = True
# Function to generate a rotation matrix for an arbitrary theta along the x-axis
def rotation_matrix_x(theta_degrees):
theta = np.radians(theta_degrees) # Convert degrees to radians
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
rotation_matrix = np.array([[1, 0, 0],
[0, cos_theta, -sin_theta],
[0, sin_theta, cos_theta]])
return rotation_matrix
class TrainLoopDiffusionWithRec(TrainLoop):
"""an interface with rec_model required apis
"""
def __init__(
self,
*,
model,
diffusion,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=0.001,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
triplane_scaling_divider=1,
use_amp=False,
diffusion_input_size=224,
schedule_sampler=None,
model_name='ddpm',
**kwargs,
):
super().__init__(
model=model,
diffusion=diffusion,
data=data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
schedule_sampler=schedule_sampler,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
use_amp=use_amp,
model_name=model_name,
**kwargs,
)
self.latent_name = 'latent_normalized' # normalized triplane latent
self.diffusion_input_size = diffusion_input_size
self.render_latent_behaviour = 'triplane_dec' # directly render using triplane operations
self.loss_class = loss_class
# self.rec_model = rec_model
self.eval_interval = eval_interval
self.eval_data = eval_data
self.iterations = iterations
# self.triplane_std = 10
self.triplane_scaling_divider = triplane_scaling_divider
if dist_util.get_rank() == 0:
self.writer = SummaryWriter(log_dir=f'{logger.get_dir()}/runs')
# def _init_optim_groups(self, rec_model):
# """for initializing the reconstruction model.
# """
# kwargs = self.kwargs
# optim_groups = [
# # vit encoder
# {
# 'name': 'vit_encoder',
# 'params': rec_model.encoder.parameters(),
# 'lr': kwargs['encoder_lr'],
# 'weight_decay': kwargs['encoder_weight_decay']
# },
# # vit decoder
# {
# 'name': 'vit_decoder',
# 'params': rec_model.decoder.vit_decoder.parameters(),
# 'lr': kwargs['vit_decoder_lr'],
# 'weight_decay': kwargs['vit_decoder_wd']
# },
# {
# 'name': 'vit_decoder_pred',
# 'params': rec_model.decoder.decoder_pred.parameters(),
# 'lr': kwargs['vit_decoder_lr'],
# # 'weight_decay': 0
# 'weight_decay': kwargs['vit_decoder_wd']
# },
# # triplane decoder
# {
# 'name': 'triplane_decoder',
# 'params': rec_model.decoder.triplane_decoder.parameters(),
# 'lr': kwargs['triplane_decoder_lr'],
# # 'weight_decay': self.weight_decay
# },
# ]
# if rec_model.decoder.superresolution is not None:
# optim_groups.append({
# 'name':
# 'triplane_decoder_superresolution',
# 'params':
# rec_model.decoder.superresolution.parameters(),
# 'lr':
# kwargs['super_resolution_lr'],
# })
# return optim_groups
@th.inference_mode()
def render_video_given_triplane(self,
planes,
rec_model,
name_prefix='0',
save_img=False,
render_reference=None,
export_mesh=False,
render_all=False,
mesh_size=192,
mesh_thres=10):
planes *= self.triplane_scaling_divider # if setting clip_denoised=True, the sampled planes will lie in [-1,1]. Thus, values beyond [+- std] will be abandoned in this version. Move to IN for later experiments.
batch_size = planes.shape[0]
# ! mesh
if planes.shape[1] == 16: # ffhq/car
ddpm_latent = {
self.latent_name: planes[:, :12],
'bg_plane': planes[:, 12:16],
}
else:
ddpm_latent = {
self.latent_name: planes,
}
ddpm_latent.update(
rec_model(latent=ddpm_latent,
behaviour='decode_after_vae_no_render'))
if export_mesh:
# if False:
import mcubes
import trimesh
dump_path = f'{logger.get_dir()}/mesh/'
os.makedirs(dump_path, exist_ok=True)
grid_out = rec_model(
latent=ddpm_latent,
grid_size=mesh_size,
behaviour='triplane_decode_grid',
)
vtx, faces = mcubes.marching_cubes(
grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(),
mesh_thres)
# st()
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx = vtx * 0.45 # g-objaverse scale
vtx_tensor = th.tensor(vtx, dtype=th.float32, device=dist_util.dev()).unsqueeze(0)
vtx_colors = rec_model.decoder.forward_points(ddpm_latent['latent_after_vit'], vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy() # (0, 1)
vtx_colors = (vtx_colors.clip(0,1) * 255).astype(np.uint8)
# rotate mesh along x dim
vtx = np.transpose(rotation_matrix_x(-90) @ np.transpose(vtx))
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
# st()
# mesh = trimesh.Trimesh(
# vertices=vtx,
# faces=faces,
# )
mesh_dump_path = os.path.join(dump_path, f'{name_prefix}.obj')
mesh.export(mesh_dump_path, 'obj')
logger.log(f"Mesh dumped to {mesh_dump_path}")
del grid_out, mesh
th.cuda.empty_cache()
# return
vid_dump_path = f'{logger.get_dir()}/triplane_{name_prefix}.mp4'
video_out = imageio.get_writer(
vid_dump_path,
mode='I',
fps=15,
codec='libx264')
if planes.shape[1] == 16: # ffhq/car
ddpm_latent = {
self.latent_name: planes[:, :12],
'bg_plane': planes[:, 12:16],
}
else:
ddpm_latent = {
self.latent_name: planes,
}
ddpm_latent.update(
rec_model(latent=ddpm_latent,
behaviour='decode_after_vae_no_render'))
if render_reference is None:
render_reference = self.eval_data # compat
else: # use train_traj
for key in ['ins', 'bbox', 'caption']:
if key in render_reference:
render_reference.pop(key)
# compat lst for enumerate
if render_all: # render 50 or 250 views, for shapenet
render_reference = [{
k: v[idx:idx + 1]
for k, v in render_reference.items()
} for idx in range(render_reference['c'].shape[0])]
else:
render_reference = [{
k: v[idx:idx + 1]
for k, v in render_reference.items()
} for idx in range(40)]
# for i, batch in enumerate(tqdm(self.eval_data)):
for i, batch in enumerate(tqdm(render_reference)):
micro = {
k: v.to(dist_util.dev()) if isinstance(v, th.Tensor) else v
for k, v in batch.items()
}
pred = rec_model(
img=None,
c=micro['c'],
latent=ddpm_latent,
behaviour='triplane_dec')
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
# save viridis_r depth
pred_depth = pred_depth.cpu()[0].permute(1, 2, 0).numpy()
pred_depth = (plt.cm.viridis(pred_depth[..., 0])[..., :3]) * 2 - 1
pred_depth = th.from_numpy(pred_depth).to(
pred['image_raw'].device).permute(2, 0, 1).unsqueeze(0)
if 'image_sr' in pred:
gen_img = pred['image_sr']
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), gen_img,
self.pool_512(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
elif pred['image_sr'].shape[-1] == 128:
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']), pred['image_sr'],
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
gen_img = pred['image_raw']
pred_vis = th.cat(
[
gen_img,
pred_depth
],
dim=-1) # B, 3, H, W
if save_img:
for batch_idx in range(gen_img.shape[0]):
sampled_img = Image.fromarray(
(gen_img[batch_idx].permute(1, 2, 0).cpu().numpy() *
127.5 + 127.5).clip(0, 255).astype(np.uint8))
# if sampled_img.size != (512, 512):
# sampled_img = sampled_img.resize(
# (128, 128), Image.HAMMING) # for shapenet
sampled_img.save(logger.get_dir() +
'/FID_Cals/{}_{}.png'.format(
name_prefix, f'{batch_idx}-{i}'))
# print('FID_Cals/{}_{}.png'.format(int(name_prefix)*batch_size+batch_idx, i))
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
# if not save_img:
for j in range(vis.shape[0]
): # ! currently only export one plane at a time
video_out.append_data(vis[j])
# if not save_img:
video_out.close()
del video_out
print('logged video to: ', f'{vid_dump_path}')
del vis, pred_vis, micro, pred,
# mesh_dump_path = 'logs/LSGM/inference/Objaverse/i23d/dit-L2/gradio_app/mesh/cfg=4.0_sample-0-rotatex.obj'
return vid_dump_path, mesh_dump_path
def _init_optim_groups(self, rec_model, freeze_decoder=False):
"""for initializing the reconstruction model; fixing decoder part.
"""
kwargs = self.kwargs
optim_groups = [
# vit encoder
{
'name': 'vit_encoder',
'params': rec_model.encoder.parameters(),
'lr': kwargs['encoder_lr'],
'weight_decay': kwargs['encoder_weight_decay']
},
]
if not freeze_decoder:
optim_groups += [
# vit decoder
{
'name': 'vit_decoder',
'params': rec_model.decoder.vit_decoder.parameters(),
'lr': kwargs['vit_decoder_lr'],
'weight_decay': kwargs['vit_decoder_wd']
},
{
'name': 'vit_decoder_pred',
'params': rec_model.decoder.decoder_pred.parameters(),
'lr': kwargs['vit_decoder_lr'],
# 'weight_decay': 0
'weight_decay': kwargs['vit_decoder_wd']
},
# triplane decoder
{
'name': 'triplane_decoder',
'params': rec_model.decoder.triplane_decoder.parameters(),
'lr': kwargs['triplane_decoder_lr'],
# 'weight_decay': self.weight_decay
},
]
if rec_model.decoder.superresolution is not None:
optim_groups.append({
'name':
'triplane_decoder_superresolution',
'params':
rec_model.decoder.superresolution.parameters(),
'lr':
kwargs['super_resolution_lr'],
})
return optim_groups
# @th.no_grad()
# # def eval_loop(self, c_list:list):
# def eval_novelview_loop(self, rec_model):
# # novel view synthesis given evaluation camera trajectory
# video_out = imageio.get_writer(
# f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}.mp4',
# mode='I',
# fps=60,
# codec='libx264')
# all_loss_dict = []
# novel_view_micro = {}
# # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
# for i, batch in enumerate(tqdm(self.eval_data)):
# # for i in range(0, 8, self.microbatch):
# # c = c_list[i].to(dist_util.dev()).reshape(1, -1)
# micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
# # st()
# if i == 0:
# novel_view_micro = {
# 'img_to_encoder': micro['img_to_encoder'][0:1]
# }
# latent = rec_model(img=novel_view_micro['img_to_encoder'],
# behaviour='enc_dec_wo_triplane')
# # else:
# # # if novel_view_micro['c'].shape[0] < micro['img'].shape[0]:
# # novel_view_micro = {
# # k:
# # v[0:1].to(dist_util.dev()).repeat_interleave(
# # micro['img'].shape[0], 0)
# # for k, v in novel_view_micro.items()
# # }
# # pred = rec_model(img=novel_view_micro['img_to_encoder'].repeat_interleave(micro['img'].shape[0], 0),
# # c=micro['c']) # pred: (B, 3, 64, 64)
# # ! only render
# pred = rec_model(
# latent={
# 'latent_after_vit': latent['latent_after_vit'].repeat_interleave(micro['img'].shape[0], 0)
# },
# c=micro['c'], # predict novel view here
# behaviour='triplane_dec',
# )
# # target = {
# # 'img': micro['img'],
# # 'depth': micro['depth'],
# # 'depth_mask': micro['depth_mask']
# # }
# # targe
# _, loss_dict = self.loss_class(pred, micro, test_mode=True)
# all_loss_dict.append(loss_dict)
# # ! move to other places, add tensorboard
# # pred_vis = th.cat([
# # pred['image_raw'],
# # -pred['image_depth'].repeat_interleave(3, dim=1)
# # ],
# # dim=-1)
# # normalize depth
# # if True:
# pred_depth = pred['image_depth']
# pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
# pred_depth.min())
# if 'image_sr' in pred:
# if pred['image_sr'].shape[-1] == 512:
# pred_vis = th.cat([
# micro['img_sr'],
# self.pool_512(pred['image_raw']), pred['image_sr'],
# self.pool_512(pred_depth).repeat_interleave(3, dim=1)
# ],
# dim=-1)
# else:
# assert pred['image_sr'].shape[-1] == 128
# pred_vis = th.cat([
# micro['img_sr'],
# self.pool_128(pred['image_raw']), pred['image_sr'],
# self.pool_128(pred_depth).repeat_interleave(3, dim=1)
# ],
# dim=-1)
# else:
# pred_vis = th.cat([
# self.pool_128(micro['img']),
# self.pool_128(pred['image_raw']),
# self.pool_128(pred_depth).repeat_interleave(3, dim=1)
# ],
# dim=-1) # B, 3, H, W
# vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
# vis = vis * 127.5 + 127.5
# vis = vis.clip(0, 255).astype(np.uint8)
# for j in range(vis.shape[0]):
# video_out.append_data(vis[j])
# video_out.close()
# del video_out, vis, pred_vis, pred
# th.cuda.empty_cache()
# val_scores_for_logging = calc_average_loss(all_loss_dict)
# with open(os.path.join(logger.get_dir(), 'scores_novelview.json'),
# 'a') as f:
# json.dump({'step': self.step, **val_scores_for_logging}, f)
# # * log to tensorboard
# for k, v in val_scores_for_logging.items():
# self.writer.add_scalar(f'Eval/NovelView/{k}', v,
# self.step + self.resume_step)
@th.no_grad()
# def eval_loop(self, c_list:list):
def eval_novelview_loop(self, rec_model):
# novel view synthesis given evaluation camera trajectory
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_novelview_{self.step+self.resume_step}.mp4',
mode='I',
fps=60,
codec='libx264')
all_loss_dict = []
novel_view_micro = {}
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
for i, batch in enumerate(tqdm(self.eval_data)):
# for i in range(0, 8, self.microbatch):
# c = c_list[i].to(dist_util.dev()).reshape(1, -1)
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
if i == 0:
novel_view_micro = {
k:
v[0:1].to(dist_util.dev()).repeat_interleave(
micro['img'].shape[0], 0)
for k, v in batch.items()
}
else:
# if novel_view_micro['c'].shape[0] < micro['img'].shape[0]:
novel_view_micro = {
k:
v[0:1].to(dist_util.dev()).repeat_interleave(
micro['img'].shape[0], 0)
for k, v in novel_view_micro.items()
}
pred = rec_model(img=novel_view_micro['img_to_encoder'],
c=micro['c']) # pred: (B, 3, 64, 64)
# target = {
# 'img': micro['img'],
# 'depth': micro['depth'],
# 'depth_mask': micro['depth_mask']
# }
# targe
_, loss_dict = self.loss_class(pred, micro, test_mode=True)
all_loss_dict.append(loss_dict)
# ! move to other places, add tensorboard
# pred_vis = th.cat([
# pred['image_raw'],
# -pred['image_depth'].repeat_interleave(3, dim=1)
# ],
# dim=-1)
# normalize depth
# if True:
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), pred['image_sr'],
self.pool_512(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
elif pred['image_sr'].shape[-1] == 256:
pred_vis = th.cat([
micro['img_sr'],
self.pool_256(pred['image_raw']), pred['image_sr'],
self.pool_256(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']),
self.pool_128(pred['image_sr']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
# pred_vis = th.cat([
# self.pool_64(micro['img']), pred['image_raw'],
# pred_depth.repeat_interleave(3, dim=1)
# ],
# dim=-1) # B, 3, H, W
pred_vis = th.cat([
self.pool_128(micro['img']),
self.pool_128(pred['image_raw']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
for j in range(vis.shape[0]):
video_out.append_data(vis[j])
video_out.close()
val_scores_for_logging = calc_average_loss(all_loss_dict)
with open(os.path.join(logger.get_dir(), 'scores_novelview.json'),
'a') as f:
json.dump({'step': self.step, **val_scores_for_logging}, f)
# * log to tensorboard
for k, v in val_scores_for_logging.items():
self.writer.add_scalar(f'Eval/NovelView/{k}', v,
self.step + self.resume_step)
del video_out
# del pred_vis
# del pred
th.cuda.empty_cache()
@th.no_grad()
def eval_loop(self, rec_model):
# novel view synthesis given evaluation camera trajectory
video_out = imageio.get_writer(
f'{logger.get_dir()}/video_{self.step+self.resume_step}.mp4',
mode='I',
fps=60,
codec='libx264')
all_loss_dict = []
# for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
for i, batch in enumerate(tqdm(self.eval_data)):
# for i in range(0, 8, self.microbatch):
# c = c_list[i].to(dist_util.dev()).reshape(1, -1)
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
# pred = self.model(img=micro['img_to_encoder'],
# c=micro['c']) # pred: (B, 3, 64, 64)
# pred of rec model
pred = rec_model(img=micro['img_to_encoder'],
c=micro['c']) # pred: (B, 3, 64, 64)
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
pred_depth.min())
if 'image_sr' in pred:
if pred['image_sr'].shape[-1] == 512:
pred_vis = th.cat([
micro['img_sr'],
self.pool_512(pred['image_raw']), pred['image_sr'],
self.pool_512(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
assert pred['image_sr'].shape[-1] == 128
pred_vis = th.cat([
micro['img_sr'],
self.pool_128(pred['image_raw']), pred['image_sr'],
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1)
else:
pred_vis = th.cat([
self.pool_128(micro['img']),
self.pool_128(pred['image_raw']),
self.pool_128(pred_depth).repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
vis = vis * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
for j in range(vis.shape[0]):
video_out.append_data(vis[j])
video_out.close()
val_scores_for_logging = calc_average_loss(all_loss_dict)
with open(os.path.join(logger.get_dir(), 'scores.json'), 'a') as f:
json.dump({'step': self.step, **val_scores_for_logging}, f)
# * log to tensorboard
for k, v in val_scores_for_logging.items():
self.writer.add_scalar(f'Eval/Rec/{k}', v,
self.step + self.resume_step)
del video_out, vis, pred_vis, pred
th.cuda.empty_cache()
self.eval_novelview_loop(rec_model)
def save(self, mp_trainer=None, model_name='ddpm'):
if mp_trainer is None:
mp_trainer = self.mp_trainer
def save_checkpoint(rate, params):
state_dict = mp_trainer.master_params_to_state_dict(params)
if dist_util.get_rank() == 0:
logger.log(f"saving model {model_name} {rate}...")
if not rate:
filename = f"model_{model_name}{(self.step+self.resume_step):07d}.pt"
else:
filename = f"ema_{model_name}_{rate}_{(self.step+self.resume_step):07d}.pt"
with bf.BlobFile(bf.join(get_blob_logdir(), filename),
"wb") as f:
th.save(state_dict, f)
# save_checkpoint(0, self.mp_trainer_ddpm.master_params)
save_checkpoint(0, mp_trainer.master_params)
if model_name == 'ddpm':
for rate, params in zip(self.ema_rate, self.ema_params):
save_checkpoint(rate, params)
th.cuda.empty_cache()
dist_util.synchronize()
def _load_and_sync_parameters(self,
model=None,
model_name='ddpm',
resume_checkpoint=None):
# load safetensors from hf
hf_loading = '.safetensors' in self.resume_checkpoint
if not hf_loading:
if resume_checkpoint is None:
resume_checkpoint, self.resume_step = find_resume_checkpoint(
self.resume_checkpoint, model_name) or self.resume_checkpoint
if model is None:
model = self.model
if hf_loading or (resume_checkpoint and Path(resume_checkpoint).exists()):
if dist_util.get_rank() == 0:
# ! rank 0 return will cause all other ranks to hang
map_location = {
'cuda:%d' % 0: 'cuda:%d' % dist_util.get_rank()
} # configure map_location properly
logger.log(f'mark {model_name} loading ')
if hf_loading:
logger.log(
f"loading model from huggingface: yslan/LN3Diff/{self.resume_checkpoint}...")
else:
logger.log(
f"loading model from checkpoint: {resume_checkpoint}...")
if hf_loading:
model_path = hf_hub_download(repo_id="yslan/LN3Diff",
filename=self.resume_checkpoint)
resume_state_dict = load_file(model_path)
else:
resume_state_dict = dist_util.load_state_dict(
resume_checkpoint, map_location=map_location)
logger.log(f'mark {model_name} loading finished')
model_state_dict = model.state_dict()
for k, v in resume_state_dict.items():
if k in model_state_dict.keys() and v.size(
) == model_state_dict[k].size():
model_state_dict[k] = v
else:
print(
'!!!! ignore key: ',
k,
": ",
v.size(),
)
if k in model_state_dict:
print('shape in model: ',
model_state_dict[k].size())
else:
print(k, ' not in model')
model.load_state_dict(model_state_dict, strict=True)
del model_state_dict
else:
logger.log(f'{resume_checkpoint} not found.')
# print(resume_checkpoint)
if dist_util.get_world_size() > 1:
dist_util.sync_params(model.parameters())
# dist_util.sync_params(model.named_parameters())
print(f'synced {model_name} params')
@th.inference_mode()
def apply_model_inference(self,
x_noisy,
t,
c=None,
model_kwargs={}): # compatiable api
# pred_params = self.ddp_model(x_noisy, t, c=c, model_kwargs=model_kwargs)
pred_params = self.ddp_model(x_noisy, t,
**model_kwargs) # unconditional model
return pred_params
@th.inference_mode()
def eval_ddpm_sample(self, rec_model, **kwargs): # , ddpm_model=None):
# rec_model.eval()
# self.ddpm_model.eval()
self.model.eval()
# if ddpm_model is None:
# ddpm_model = self.ddp_model
args = dnnlib.EasyDict(
dict(
batch_size=1,
# image_size=224,
image_size=self.diffusion_input_size,
# ddpm_image_size=224,
# denoise_in_channels=self.ddp_rec_model.module.decoder.triplane_decoder.out_chans, # type: ignore
denoise_in_channels=self.ddpm_model.
in_channels, # type: ignore
clip_denoised=False,
class_cond=False,
use_ddim=False))
model_kwargs = {}
if args.class_cond:
classes = th.randint(low=0,
high=NUM_CLASSES,
size=(args.batch_size, ),
device=dist_util.dev())
model_kwargs["y"] = classes
diffusion = self.diffusion
sample_fn = (diffusion.p_sample_loop
if not args.use_ddim else diffusion.ddim_sample_loop)
# for i in range(2):
for i in range(1):
triplane_sample = sample_fn(
# self.ddp_model,
self,
(args.batch_size, args.denoise_in_channels,
self.diffusion_input_size, self.diffusion_input_size),
clip_denoised=args.clip_denoised,
# model_kwargs=model_kwargs,
mixing_normal=True, # !
device=dist_util.dev(),
# model_kwargs=model_kwargs,
**model_kwargs)
th.cuda.empty_cache()
self.render_video_given_triplane(
triplane_sample,
rec_model,
name_prefix=f'{self.step + self.resume_step}_{i}')
th.cuda.empty_cache()
# rec_model.train()
# self.ddpm_model.train()
# ddpm_model.train()
self.model.train()
# @th.inference_mode()
# def render_video_given_triplane(self,
# planes,
# rec_model,
# name_prefix='0',
# save_img=False):
# planes *= self.triplane_scaling_divider # if setting clip_denoised=True, the sampled planes will lie in [-1,1]. Thus, values beyond [+- std] will be abandoned in this version. Move to IN for later experiments.
# # sr_w_code = getattr(self.ddp_rec_model.module.decoder, 'w_avg', None)
# # sr_w_code = None
# batch_size = planes.shape[0]
# # if sr_w_code is not None:
# # sr_w_code = sr_w_code.reshape(1, 1,
# # -1).repeat_interleave(batch_size, 0)
# # used during diffusion sampling inference
# # if not save_img:
# video_out = imageio.get_writer(
# f'{logger.get_dir()}/triplane_{name_prefix}.mp4',
# mode='I',
# fps=15,
# codec='libx264')
# if planes.shape[1] == 16: # ffhq/car
# ddpm_latent = {
# self.latent_name: planes[:, :12],
# 'bg_plane': planes[:, 12:16],
# }
# else:
# ddpm_latent = {
# self.latent_name: planes,
# }
# ddpm_latent.update(rec_model(latent=ddpm_latent, behaviour='decode_after_vae_no_render'))
# # planes = planes.repeat_interleave(micro['c'].shape[0], 0)
# # for i in range(0, len(c_list), 1): # TODO, larger batch size for eval
# # micro_batchsize = 2
# # micro_batchsize = batch_size
# for i, batch in enumerate(tqdm(self.eval_data)):
# micro = {
# k: v.to(dist_util.dev()) if isinstance(v, th.Tensor) else v
# for k, v in batch.items()
# }
# # micro = {'c': batch['c'].to(dist_util.dev()).repeat_interleave(batch_size, 0)}
# # all_pred = []
# pred = rec_model(
# img=None,
# c=micro['c'],
# latent=ddpm_latent,
# # latent={
# # # k: v.repeat_interleave(micro['c'].shape[0], 0) if v is not None else None
# # k: v.repeat_interleave(micro['c'].shape[0], 0) if v is not None else None
# # for k, v in ddpm_latent.items()
# # },
# behaviour='triplane_dec')
# # if True:
# pred_depth = pred['image_depth']
# pred_depth = (pred_depth - pred_depth.min()) / (pred_depth.max() -
# pred_depth.min())
# if 'image_sr' in pred:
# gen_img = pred['image_sr']
# if pred['image_sr'].shape[-1] == 512:
# pred_vis = th.cat([
# micro['img_sr'],
# self.pool_512(pred['image_raw']), gen_img,
# self.pool_512(pred_depth).repeat_interleave(3, dim=1)
# ],
# dim=-1)
# elif pred['image_sr'].shape[-1] == 128:
# pred_vis = th.cat([
# micro['img_sr'],
# self.pool_128(pred['image_raw']), pred['image_sr'],
# self.pool_128(pred_depth).repeat_interleave(3, dim=1)
# ],
# dim=-1)
# else:
# gen_img = pred['image_raw']
# pooled_depth = self.pool_128(pred_depth.repeat_interleave(3, dim=1))
# pred_vis = th.cat(
# [
# # self.pool_128(micro['img']),
# self.pool_128(gen_img),
# pooled_depth,
# ],
# dim=-1) # B, 3, H, W
# if save_img:
# for batch_idx in range(gen_img.shape[0]):
# sampled_img = Image.fromarray(
# (gen_img[batch_idx].permute(1, 2, 0).cpu().numpy() *
# 127.5 + 127.5).clip(0, 255).astype(np.uint8))
# if sampled_img.size != (512, 512):
# sampled_img = sampled_img.resize(
# (128, 128), Image.HAMMING) # for shapenet
# sampled_img.save(logger.get_dir() +
# '/FID_Cals/{}_{}.png'.format(
# int(name_prefix) * batch_size +
# batch_idx, i))
# # ! save depth
# torchvision.utils.save_image(pooled_depth[batch_idx:batch_idx+1],logger.get_dir() +
# '/FID_Cals/{}_{}_depth.png'.format(
# int(name_prefix) * batch_size +
# batch_idx, i), normalize=True, val_range=(0,1), padding=0)
# # print('FID_Cals/{}_{}.png'.format(int(name_prefix)*batch_size+batch_idx, i))
# vis = pred_vis.permute(0, 2, 3, 1).cpu().numpy()
# vis = vis * 127.5 + 127.5
# vis = vis.clip(0, 255).astype(np.uint8)
# # if vis.shape[0] > 1:
# # vis = np.concatenate(np.split(vis, vis.shape[0], axis=0),
# # axis=-3)
# # if not save_img:
# for j in range(vis.shape[0]
# ): # ! currently only export one plane at a time
# video_out.append_data(vis[j])
# # if not save_img:
# video_out.close()
# del video_out
# print('logged video to: ',
# f'{logger.get_dir()}/triplane_{name_prefix}.mp4')
# del vis, pred_vis, micro, pred,
@th.inference_mode()
def render_video_noise_schedule(self, name_prefix='0'):
# planes *= self.triplane_std # denormalize for rendering
video_out = imageio.get_writer(
f'{logger.get_dir()}/triplane_visnoise_{name_prefix}.mp4',
mode='I',
fps=30,
codec='libx264')
for i, batch in enumerate(tqdm(self.eval_data)):
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
if i % 10 != 0:
continue
# ========= novel view plane settings ====
if i == 0:
novel_view_micro = {
k:
v[0:1].to(dist_util.dev()).repeat_interleave(
micro['img'].shape[0], 0)
for k, v in batch.items()
}
else:
# if novel_view_micro['c'].shape[0] < micro['img'].shape[0]:
novel_view_micro = {
k:
v[0:1].to(dist_util.dev()).repeat_interleave(
micro['img'].shape[0], 0)
for k, v in novel_view_micro.items()
}
latent = self.ddp_rec_model(
img=novel_view_micro['img_to_encoder'],
c=micro['c'])[self.latent_name] # pred: (B, 3, 64, 64)
x_start = latent / self.triplane_scaling_divider # normalize std to 1
# x_start = latent
all_pred_vis = []
# for t in th.range(0,
# 4001,
# 500,
# dtype=th.long,
# device=dist_util.dev()): # cosine 4k steps
for t in th.range(0,
1001,
125,
dtype=th.long,
device=dist_util.dev()): # cosine 4k steps
# ========= add noise according to t
noise = th.randn_like(x_start) # x_start is the x0 image
x_t = self.diffusion.q_sample(
x_start, t, noise=noise
) # * add noise according to predefined schedule
planes_x_t = (x_t * self.triplane_scaling_divider).clamp(
-50, 50) # de-scaling noised x_t
# planes_x_t = (x_t * 1).clamp(
# -50, 50) # de-scaling noised x_t
# ===== visualize
pred = self.ddp_rec_model(
img=None,
c=micro['c'],
latent=planes_x_t,
behaviour=self.render_latent_behaviour
) # pred: (B, 3, 64, 64)
# pred_depth = pred['image_depth']
# pred_depth = (pred_depth - pred_depth.min()) / (
# pred_depth.max() - pred_depth.min())
# pred_vis = th.cat([
# # self.pool_128(micro['img']),
# pred['image_raw'],
# ],
# dim=-1) # B, 3, H, W
pred_vis = pred['image_raw']
all_pred_vis.append(pred_vis)
# TODO, make grid
all_pred_vis = torchvision.utils.make_grid(
th.cat(all_pred_vis, 0),
nrow=len(all_pred_vis),
normalize=True,
value_range=(-1, 1),
scale_each=True) # normalized to [-1,1]
vis = all_pred_vis.permute(1, 2, 0).cpu().numpy() # H W 3
vis = (vis * 255).clip(0, 255).astype(np.uint8)
video_out.append_data(vis)
video_out.close()
print('logged video to: ',
f'{logger.get_dir()}/triplane_visnoise_{name_prefix}.mp4')
th.cuda.empty_cache()
@th.inference_mode()
def plot_noise_nsr_curve(self, name_prefix='0'):
# planes *= self.triplane_std # denormalize for rendering
for i, batch in enumerate(tqdm(self.eval_data)):
micro = {k: v.to(dist_util.dev()) for k, v in batch.items()}
if i % 10 != 0:
continue
# if i == 0:
latent = self.ddp_rec_model(
img=micro['img_to_encoder'],
c=micro['c'],
behaviour='enc_dec_wo_triplane') # pred: (B, 3, 64, 64)
x_start = latent[
self.
latent_name] / self.triplane_scaling_divider # normalize std to 1
snr_list = []
snr_wo_data_list = []
xt_mean = []
xt_std = []
for t in th.range(0,
1001,
5,
dtype=th.long,
device=dist_util.dev()): # cosine 4k steps
# ========= add noise according to t
noise = th.randn_like(x_start) # x_start is the x0 image
beta_t = _extract_into_tensor(
self.diffusion.sqrt_alphas_cumprod, t, x_start.shape)
one_minus_beta_t = _extract_into_tensor(
self.diffusion.sqrt_one_minus_alphas_cumprod, t,
x_start.shape)
signal_t = beta_t * x_start
noise_t = one_minus_beta_t * noise
x_t = signal_t + noise_t
snr = signal_t / (noise_t + 1e-6)
snr_wo_data = beta_t / (one_minus_beta_t + 1e-6)
snr_list.append(abs(snr).mean().cpu().numpy())
snr_wo_data_list.append(abs(snr_wo_data).mean().cpu().numpy())
xt_mean.append(x_t.mean().cpu().numpy())
xt_std.append(x_t.std().cpu().numpy())
print('xt_mean', xt_mean)
print('xt_std', xt_std)
print('snr', snr_list)
th.save(
{
'xt_mean': xt_mean,
'xt_std': xt_std,
'snr': snr_list,
'snr_wo_data': snr_wo_data_list,
},
Path(logger.get_dir()) / f'snr_{i}.pt')
th.cuda.empty_cache()
# a legacy class for direct diffusion training, not joint.
class TrainLoop3DDiffusion(TrainLoopDiffusionWithRec):
def __init__(
self,
*,
# model,
rec_model,
denoise_model,
diffusion,
loss_class,
data,
eval_data,
batch_size,
microbatch,
lr,
ema_rate,
log_interval,
eval_interval,
save_interval,
resume_checkpoint,
use_fp16=False,
fp16_scale_growth=0.001,
schedule_sampler=None,
weight_decay=0,
lr_anneal_steps=0,
iterations=10001,
ignore_resume_opt=False,
freeze_ae=False,
denoised_ae=True,
triplane_scaling_divider=10,
use_amp=False,
diffusion_input_size=224,
**kwargs):
super().__init__(
model=denoise_model,
diffusion=diffusion,
loss_class=loss_class,
data=data,
eval_data=eval_data,
batch_size=batch_size,
microbatch=microbatch,
lr=lr,
ema_rate=ema_rate,
log_interval=log_interval,
eval_interval=eval_interval,
save_interval=save_interval,
resume_checkpoint=resume_checkpoint,
use_fp16=use_fp16,
fp16_scale_growth=fp16_scale_growth,
weight_decay=weight_decay,
lr_anneal_steps=lr_anneal_steps,
iterations=iterations,
triplane_scaling_divider=triplane_scaling_divider,
use_amp=use_amp,
diffusion_input_size=diffusion_input_size,
schedule_sampler=schedule_sampler,
)
# self.accelerator = Accelerator()
self._load_and_sync_parameters(model=self.rec_model, model_name='rec')
# * for loading EMA
self.mp_trainer_rec = MixedPrecisionTrainer(
model=self.rec_model,
use_fp16=self.use_fp16,
use_amp=use_amp,
fp16_scale_growth=fp16_scale_growth,
model_name='rec',
)
self.denoised_ae = denoised_ae
if not freeze_ae:
self.opt_rec = AdamW(
self._init_optim_groups(self.mp_trainer_rec.model))
else:
print('!! freezing AE !!')
# if not freeze_ae:
if self.resume_step:
if not ignore_resume_opt:
self._load_optimizer_state()
else:
logger.warn("Ignoring optimizer state from checkpoint.")
self.ema_params_rec = [
self._load_ema_parameters(
rate,
self.rec_model,
self.mp_trainer_rec,
model_name=self.mp_trainer_rec.model_name)
for rate in self.ema_rate
] # for sync reconstruction model
else:
if not freeze_ae:
self.ema_params_rec = [
copy.deepcopy(self.mp_trainer_rec.master_params)
for _ in range(len(self.ema_rate))
]
if self.use_ddp is True:
self.rec_model = th.nn.SyncBatchNorm.convert_sync_batchnorm(
self.rec_model)
self.ddp_rec_model = DDP(
self.rec_model,
device_ids=[dist_util.dev()],
output_device=dist_util.dev(),
broadcast_buffers=False,
bucket_cap_mb=128,
find_unused_parameters=False,
# find_unused_parameters=True,
)
else:
self.ddp_rec_model = self.rec_model
if freeze_ae:
self.ddp_rec_model.eval()
self.ddp_rec_model.requires_grad_(False)
self.freeze_ae = freeze_ae
# if use_amp:
def _update_ema_rec(self):
for rate, params in zip(self.ema_rate, self.ema_params_rec):
update_ema(params, self.mp_trainer_rec.master_params, rate=rate)
def run_loop(self, batch=None):
th.cuda.empty_cache()
while (not self.lr_anneal_steps
or self.step + self.resume_step < self.lr_anneal_steps):
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
# if self.step % self.eval_interval == 0 and self.step != 0:
if self.step % self.eval_interval == 0:
if dist_util.get_rank() == 0:
self.eval_ddpm_sample(self.ddp_rec_model)
# continue # TODO, diffusion inference
# self.eval_loop()
# self.eval_novelview_loop()
# let all processes sync up before starting with a new epoch of training
dist_util.synchronize()
th.cuda.empty_cache()
batch = next(self.data)
self.run_step(batch)
if self.step % self.log_interval == 0 and dist_util.get_rank(
) == 0:
out = logger.dumpkvs()
# * log to tensorboard
for k, v in out.items():
self.writer.add_scalar(f'Loss/{k}', v,
self.step + self.resume_step)
if self.step % self.save_interval == 0 and self.step != 0:
self.save()
if not self.freeze_ae:
self.save(self.mp_trainer_rec, 'rec')
dist_util.synchronize()
th.cuda.empty_cache()
# Run for a finite amount of time in integration tests.
if os.environ.get("DIFFUSION_TRAINING_TEST",
"") and self.step > 0:
return
self.step += 1
if self.step > self.iterations:
print('reached maximum iterations, exiting')
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
if not self.freeze_ae:
self.save(self.mp_trainer_rec, 'rec')
exit()
# Save the last checkpoint if it wasn't already saved.
if (self.step - 1) % self.save_interval != 0:
self.save()
if not self.freeze_ae:
self.save(self.mp_trainer_rec, 'rec')
def run_step(self, batch, cond=None):
self.forward_backward(batch,
cond) # type: ignore # * 3D Reconstruction step
took_step_ddpm = self.mp_trainer.optimize(self.opt)
if took_step_ddpm:
self._update_ema()
if not self.freeze_ae:
took_step_rec = self.mp_trainer_rec.optimize(self.opt_rec)
if took_step_rec:
self._update_ema_rec()
self._anneal_lr()
self.log_step()
def forward_backward(self, batch, *args, **kwargs):
# return super().forward_backward(batch, *args, **kwargs)
self.mp_trainer.zero_grad()
# all_denoised_out = dict()
batch_size = batch['img'].shape[0]
for i in range(0, batch_size, self.microbatch):
micro = {
k: v[i:i + self.microbatch].to(dist_util.dev())
for k, v in batch.items()
}
last_batch = (i + self.microbatch) >= batch_size
# if not freeze_ae:
# =================================== ae part ===================================
with th.cuda.amp.autocast(dtype=th.float16,
enabled=self.mp_trainer_rec.use_amp
and not self.freeze_ae):
# with th.cuda.amp.autocast(dtype=th.float16,
# enabled=False,): # ! debugging, no AMP on all the input
latent = self.ddp_rec_model(
img=micro['img_to_encoder'],
c=micro['c'],
behaviour='enc_dec_wo_triplane') # pred: (B, 3, 64, 64)
if not self.freeze_ae:
target = micro
pred = self.rec_model(latent=latent,
c=micro['c'],
behaviour='triplane_dec')
if last_batch or not self.use_ddp:
ae_loss, loss_dict = self.loss_class(pred,
target,
test_mode=False)
else:
with self.ddp_model.no_sync(): # type: ignore
ae_loss, loss_dict = self.loss_class(
pred, target, test_mode=False)
log_rec3d_loss_dict(loss_dict)
else:
ae_loss = th.tensor(0.0).to(dist_util.dev())
# =================================== prepare for ddpm part ===================================
micro_to_denoise = latent[
self.
latent_name] / self.triplane_scaling_divider # normalize std to 1
t, weights = self.schedule_sampler.sample(
micro_to_denoise.shape[0], dist_util.dev())
model_kwargs = {}
# print(micro_to_denoise.min(), micro_to_denoise.max())
compute_losses = functools.partial(
self.diffusion.training_losses,
self.ddp_model,
micro_to_denoise, # x_start
t,
model_kwargs=model_kwargs,
)
with th.cuda.amp.autocast(dtype=th.float16,
enabled=self.mp_trainer.use_amp):
if last_batch or not self.use_ddp:
losses = compute_losses()
# denoised_out = denoised_fn()
else:
with self.ddp_model.no_sync(): # type: ignore
losses = compute_losses()
if isinstance(self.schedule_sampler, LossAwareSampler):
self.schedule_sampler.update_with_local_losses(
t, losses["loss"].detach())
denoise_loss = (losses["loss"] * weights).mean()
x_t = losses['x_t']
model_output = losses['model_output']
losses.pop('x_t')
losses.pop('model_output')
log_loss_dict(self.diffusion, t, {
k: v * weights
for k, v in losses.items()
})
# self.mp_trainer.backward(denoise_loss)
# =================================== denosied ae part ===================================
# if self.denoised_ae or self.step % 500 == 0:
if self.denoised_ae:
with th.cuda.amp.autocast(
dtype=th.float16,
enabled=self.mp_trainer_rec.use_amp
and not self.freeze_ae):
# continue
denoised_out = denoised_fn()
denoised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'],
latent=denoised_out['pred_xstart'] * self.
triplane_scaling_divider, # TODO, how to define the scale automatically?
behaviour=self.render_latent_behaviour)
# if self.denoised_ae:
if last_batch or not self.use_ddp:
denoised_ae_loss, loss_dict = self.loss_class(
denoised_ae_pred, micro, test_mode=False)
else:
with self.ddp_model.no_sync(): # type: ignore
denoised_ae_loss, loss_dict = self.loss_class(
denoised_ae_pred, micro, test_mode=False)
# * rename
loss_dict_denoise_ae = {}
for k, v in loss_dict.items():
loss_dict_denoise_ae[f'{k}_denoised'] = v.mean()
log_rec3d_loss_dict(loss_dict_denoise_ae)
else:
denoised_ae_loss = th.tensor(0.0).to(dist_util.dev())
loss = ae_loss + denoise_loss + denoised_ae_loss
# self.mp_trainer.backward(denosied_ae_loss)
# self.mp_trainer.backward(loss)
# exit AMP before backward
self.mp_trainer.backward(loss)
# if self.freeze_ae:
# else:
# self.mp_trainer.backward(denoise_loss)
# TODO, merge visualization with original AE
# =================================== denoised AE log part ===================================
# if dist_util.get_rank() == 0 and self.step % 500 == 0:
if dist_util.get_rank() == 1 and self.step % 500 == 0:
with th.no_grad():
# gt_vis = th.cat([batch['img'], batch['depth']], dim=-1)
gt_depth = micro['depth']
if gt_depth.ndim == 3:
gt_depth = gt_depth.unsqueeze(1)
gt_depth = (gt_depth - gt_depth.min()) / (gt_depth.max() -
gt_depth.min())
# if True:
if self.freeze_ae:
latent_micro = {
k:
v[0:1].to(dist_util.dev()) if v is not None else v
for k, v in latent.items()
}
pred = self.rec_model(latent=latent_micro,
c=micro['c'][0:1],
behaviour='triplane_dec')
else:
assert pred is not None
pred_depth = pred['image_depth']
pred_depth = (pred_depth - pred_depth.min()) / (
pred_depth.max() - pred_depth.min())
pred_img = pred['image_raw']
gt_img = micro['img']
# if 'image_sr' in pred: # TODO
# pred_img = th.cat(
# [self.pool_512(pred_img), pred['image_sr']],
# dim=-1)
# gt_img = th.cat(
# [self.pool_512(micro['img']), micro['img_sr']],
# dim=-1)
# pred_depth = self.pool_512(pred_depth)
# gt_depth = self.pool_512(gt_depth)
gt_vis = th.cat(
[
gt_img, micro['img'], micro['img'],
gt_depth.repeat_interleave(3, dim=1)
],
dim=-1)[0:1] # TODO, fail to load depth. range [0, 1]
sr_w_code = latent_micro.get('sr_w_code', None)
if sr_w_code is not None:
sr_w_code = sr_w_code[0:1]
noised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
latent={
'latent_normalized':
x_t[0:1] * self.triplane_scaling_divider,
# 'sr_w_code': getattr(self.ddp_rec_model.module.decoder,'w_avg').reshape(1,1,-1)
'sr_w_code': sr_w_code
}, # TODO, how to define the scale automatically
behaviour=self.render_latent_behaviour)
denoised_fn = functools.partial(
self.diffusion.p_mean_variance,
self.ddp_model,
x_t, # x_start
t,
model_kwargs=model_kwargs)
denoised_out = denoised_fn()
denoised_ae_pred = self.ddp_rec_model(
img=None,
c=micro['c'][0:1],
# latent=denoised_out['pred_xstart'][0:1] * self.
# triplane_scaling_divider, # TODO, how to define the scale automatically
latent={
'latent_normalized':
denoised_out['pred_xstart'][0:1] * self.
triplane_scaling_divider, # TODO, how to define the scale automatically
# 'sr_w_code': getattr(self.ddp_rec_model.module.decoder,'w_avg').reshape(1,1,-1)
# 'sr_w_code': latent_micro['sr_w_code'][0:1]
'sr_w_code':
sr_w_code
},
behaviour=self.render_latent_behaviour)
assert denoised_ae_pred is not None
# print(pred_img.shape)
# print('denoised_ae:', self.denoised_ae)
pred_vis = th.cat([
pred_img[0:1], noised_ae_pred['image_raw'],
denoised_ae_pred['image_raw'],
pred_depth[0:1].repeat_interleave(3, dim=1)
],
dim=-1) # B, 3, H, W
vis = th.cat([gt_vis, pred_vis], dim=-2)[0].permute(
1, 2, 0).cpu() # ! pred in range[-1, 1]
# vis = th.cat([
# self.pool_128(micro['img']), x_t[:, :3, ...],
# denoised_out['pred_xstart'][:, :3, ...]
# ],
# dim=-1)[0].permute(
# 1, 2, 0).cpu() # ! pred in range[-1, 1]
# vis_grid = torchvision.utils.make_grid(vis) # HWC
vis = vis.numpy() * 127.5 + 127.5
vis = vis.clip(0, 255).astype(np.uint8)
Image.fromarray(vis).save(
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}.jpg'
)
print(
'log denoised vis to: ',
f'{logger.get_dir()}/{self.step+self.resume_step}denoised_{t[0].item()}.jpg'
)
th.cuda.empty_cache()
# /mnt/lustre/yslan/logs/nips23/LSGM/cldm/inference/car/ablation_nomixing/FID50k