Spaces:
Running on A10G

OpenLRM / app.py
zxhezexin's picture
Update app
797cdd5
raw
history blame
7.93 kB
# Copyright (c) 2023-2024, Zexin He
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from PIL import Image
import numpy as np
import gradio as gr
def assert_input_image(input_image):
if input_image is None:
raise gr.Error("No image selected or uploaded!")
def prepare_working_dir():
import tempfile
working_dir = tempfile.TemporaryDirectory()
return working_dir
def init_preprocessor():
from openlrm.utils.preprocess import Preprocessor
global preprocessor
preprocessor = Preprocessor()
def preprocess_fn(image_in: np.ndarray, remove_bg: bool, recenter: bool, working_dir):
image_raw = os.path.join(working_dir.name, "raw.png")
with Image.fromarray(image_in) as img:
img.save(image_raw)
image_out = os.path.join(working_dir.name, "rembg.png")
success = preprocessor.preprocess(image_path=image_raw, save_path=image_out, rmbg=remove_bg, recenter=recenter)
assert success, f"Failed under preprocess_fn!"
return image_out
def demo_openlrm(infer_impl):
def core_fn(image: str, source_cam_dist: float, working_dir):
dump_video_path = os.path.join(working_dir.name, "output.mp4")
dump_mesh_path = os.path.join(working_dir.name, "output.ply")
infer_impl(
image_path=image,
source_cam_dist=source_cam_dist,
export_video=True,
export_mesh=False,
dump_video_path=dump_video_path,
dump_mesh_path=dump_mesh_path,
)
return dump_video_path
def example_fn(image: np.ndarray):
from gradio.utils import get_cache_folder
working_dir = get_cache_folder()
image = preprocess_fn(
image_in=image,
remove_bg=True,
recenter=True,
working_dir=working_dir,
)
video = core_fn(
image=image,
source_cam_dist=2.0,
working_dir=working_dir,
)
return image, video
_TITLE = '''OpenLRM: Open-Source Large Reconstruction Models'''
_DESCRIPTION = '''
<div>
<a style="display:inline-block" href='https://github.com/3DTopia/OpenLRM'><img src='https://img.shields.io/github/stars/3DTopia/OpenLRM?style=social'/></a>
<a style="display:inline-block; margin-left: .5em" href="https://huggingface.co/zxhezexin"><img src='https://img.shields.io/badge/Model-Weights-blue'/></a>
</div>
OpenLRM is an open-source implementation of Large Reconstruction Models.
<strong>Image-to-3D in 10 seconds with A100!</strong>
<strong>Disclaimer:</strong> This demo uses `openlrm-mix-base-1.1` model with 288x288 rendering resolution here for a quick demonstration.
'''
with gr.Blocks(analytics_enabled=False) as demo:
# HEADERS
with gr.Row():
with gr.Column(scale=1):
gr.Markdown('# ' + _TITLE)
with gr.Row():
gr.Markdown(_DESCRIPTION)
# DISPLAY
with gr.Row():
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_input_image"):
with gr.TabItem('Input Image'):
with gr.Row():
input_image = gr.Image(label="Input Image", image_mode="RGBA", width="auto", sources="upload", type="numpy", elem_id="content_image")
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_processed_image"):
with gr.TabItem('Processed Image'):
with gr.Row():
processed_image = gr.Image(label="Processed Image", image_mode="RGBA", type="filepath", elem_id="processed_image", width="auto", interactive=False)
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_render_video"):
with gr.TabItem('Rendered Video'):
with gr.Row():
output_video = gr.Video(label="Rendered Video", format="mp4", width="auto", autoplay=True)
# SETTING
with gr.Row():
with gr.Column(variant='panel', scale=1):
with gr.Tabs(elem_id="openlrm_attrs"):
with gr.TabItem('Settings'):
with gr.Column(variant='panel'):
gr.Markdown(
"""
<strong>Best Practice</strong>:
Centered objects in reasonable sizes. Try adjusting source camera distances.
"""
)
checkbox_rembg = gr.Checkbox(True, label='Remove background')
checkbox_recenter = gr.Checkbox(True, label='Recenter the object')
slider_cam_dist = gr.Slider(1.0, 3.5, value=2.0, step=0.1, label="Source Camera Distance")
submit = gr.Button('Generate', elem_id="openlrm_generate", variant='primary')
# EXAMPLES
with gr.Row():
examples = [
['assets/sample_input/owl.png'],
['assets/sample_input/building.png'],
['assets/sample_input/mailbox.png'],
['assets/sample_input/fire.png'],
['assets/sample_input/girl.png'],
['assets/sample_input/lamp.png'],
['assets/sample_input/hydrant.png'],
['assets/sample_input/hotdogs.png'],
['assets/sample_input/traffic.png'],
['assets/sample_input/ceramic.png'],
]
gr.Examples(
examples=examples,
inputs=[input_image],
outputs=[processed_image, output_video],
fn=example_fn,
cache_examples=bool(os.getenv('SPACE_ID')),
examples_per_page=20,
)
working_dir = gr.State()
submit.click(
fn=assert_input_image,
inputs=[input_image],
queue=False,
).success(
fn=prepare_working_dir,
outputs=[working_dir],
queue=False,
).success(
fn=preprocess_fn,
inputs=[input_image, checkbox_rembg, checkbox_recenter, working_dir],
outputs=[processed_image],
).success(
fn=core_fn,
inputs=[processed_image, slider_cam_dist, working_dir],
outputs=[output_video],
)
demo.queue()
demo.launch()
def launch_gradio_app():
os.environ.update({
"APP_ENABLED": "1",
"APP_MODEL_NAME": "zxhezexin/openlrm-mix-base-1.1",
"APP_INFER": "./configs/infer-gradio.yaml",
"APP_TYPE": "infer.lrm",
"NUMBA_THREADING_LAYER": 'omp',
})
from openlrm.runners import REGISTRY_RUNNERS
from openlrm.runners.infer.base_inferrer import Inferrer
InferrerClass : Inferrer = REGISTRY_RUNNERS[os.getenv("APP_TYPE")]
with InferrerClass() as inferrer:
init_preprocessor()
if not bool(os.getenv('SPACE_ID')):
from openlrm.utils.proxy import no_proxy
demo = no_proxy(demo_openlrm)
else:
demo = demo_openlrm
demo(infer_impl=inferrer.infer_single)
if __name__ == '__main__':
launch_gradio_app()