File size: 9,695 Bytes
9c915ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# Copyright 2024 Stability AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" StableLM model configuration """

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

STABLELM_PRETRAINED_CONFIG_ARCHIVE_MAP = {
    "stabilityai/stablelm-3b-4e1t": "https://huggingface.co/stabilityai/stablelm-3b-4e1t/resolve/main/config.json",
    # See all StableLM models at https://huggingface.co/models?filter=stablelm
}


class StableLmConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`~StableLmModel`].
    It is used to instantiate an StableLM model according to the specified arguments, defining the model
    architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
    the StableLM [stabilityai/stablelm-3b-4e1t](https://huggingface.co/stabilityai/stablelm-3b-4e1t) architecture.

    Configuration objects inherit from  [`PretrainedConfig`] and can be used
    to control the model outputs. Read the documentation from  [`PretrainedConfig`]
    for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50304):
            Vocabulary size of the StableLM model. Defines the number of different tokens that
            can be represented by the `inputs_ids` passed when calling [`StableLmModel`].
        intermediate_size (`int`, *optional*, defaults to 6912):
            Dimension of the MLP representations.
        hidden_size (`int`, *optional*, defaults to 2560):
            Number of hidden layers in the Transformer decoder.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer decoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        num_key_value_heads (`int`, *optional*, defaults to 32):
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
            `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
            by meanpooling all the original heads within that group. For more details checkout [this
            paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
            `num_attention_heads`.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string).
        max_position_embeddings (`int`, *optional*, defaults to 4096):
            The maximum sequence length that this model might ever be used with.
            Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing
             all weight matrices.
        layer_norm_eps (`float`, *optional*, defaults to 1e-05):
            The epsilon used by the normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions
            (not used by all models). Only relevant if `config.is_decoder=True`.
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
            Whether the model's input and output word embeddings should be tied.
        rope_theta (`float`, *optional*, defaults to `10000.0`):
            The base period of the RoPE embeddings.
        rope_scaling (`Dict`, *optional*):
            Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
            strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
            `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
            `max_position_embeddings` to the expected new maximum. See the following thread for more information on how
            these scaling strategies behave:
            https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This
            is an experimental feature, subject to breaking API changes in future versions.
        use_qkv_bias (`bool`, *optional*, defaults to `False`):
            Whether or not the model should use bias for qkv layers.
        qk_layernorm (`bool`, *optional*, defaults to `False`):
            Whether or not to normalize, per head, the Queries and Keys after projecting the hidden states.
        use_parallel_residual (`bool`, *optional*, defaults to `False`):
            Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
            speedup at large scales.
        hidden_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio after applying the MLP to the hidden states.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        partial_rotary_factor (`float`, *optional*, defaults to 0.25):
            Percentage of the query and keys which will have rotary embedding.
        bos_token_id (int, *optional*, defaults to 0):
            The id of the `BOS` token in the vocabulary.
        eos_token_id (int, *optional*, defaults to 0):
            The id of the `EOS` token in the vocabulary.

    Example:

    ```python
    >>> from transformers import StableLmModel, StableLmConfig

    >>> # Initializing a StableLM stablelm-3b style configuration
    >>> configuration = StableLmConfig()
    ```"""

    model_type = "stablelm"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=50304,
        intermediate_size=6912,
        hidden_size=2560,
        num_hidden_layers=32,
        num_attention_heads=32,
        num_key_value_heads=32,
        hidden_act="silu",
        max_position_embeddings=4096,
        initializer_range=0.02,
        layer_norm_eps=1.0e-5,
        use_cache=True,
        tie_word_embeddings=False,
        rope_theta=10_000,
        rope_scaling=None,
        use_qkv_bias=False,
        qk_layernorm=False,
        use_parallel_residual=False,
        hidden_dropout=0.0,
        attention_dropout=0.0,
        partial_rotary_factor=0.25,
        bos_token_id=0,
        eos_token_id=0,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings

        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_key_value_heads = num_key_value_heads
        self.hidden_act = hidden_act

        self.initializer_range = initializer_range
        self.layer_norm_eps = layer_norm_eps
        self.use_cache = use_cache
        self.rope_theta = rope_theta
        self.rope_scaling = rope_scaling
        self.use_qkv_bias = use_qkv_bias
        self.qk_layernorm = qk_layernorm
        self.use_parallel_residual = use_parallel_residual
        self.hidden_dropout = hidden_dropout
        self.attention_dropout = attention_dropout
        self.partial_rotary_factor = partial_rotary_factor
        self._rope_scaling_validation()

        super().__init__(
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

    # Copied from transformers.models.llama.configuration_llama.LlamaConfig._rope_scaling_validation
    def _rope_scaling_validation(self):
        """
        Validate the `rope_scaling` configuration.
        """
        if self.rope_scaling is None:
            return

        if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
            raise ValueError(
                "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
                f"got {self.rope_scaling}"
            )
        rope_scaling_type = self.rope_scaling.get("type", None)
        rope_scaling_factor = self.rope_scaling.get("factor", None)
        if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
            raise ValueError(
                f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
            )
        if (
            rope_scaling_factor is None
            or not isinstance(rope_scaling_factor, float)
            or rope_scaling_factor <= 1.0
        ):
            raise ValueError(
                f"`rope_scaling`'s factor field must be a float > 1, got {rope_scaling_factor}"
            )