--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-32B tags: - llama-factory - lora - generated_from_trainer model-index: - name: pretrain results: [] --- # pretrain This model is a fine-tuned version of [Qwen/Qwen2.5-32B](https://huggingface.co/Qwen/Qwen2.5-32B) on the openreview dataset. It achieves the following results on the evaluation set: - Loss: 1.1076 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 4 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2155 | 0.1604 | 100 | 1.2046 | | 1.1392 | 0.3209 | 200 | 1.1238 | | 1.1181 | 0.4813 | 300 | 1.1140 | | 1.1252 | 0.6418 | 400 | 1.1097 | | 1.1199 | 0.8022 | 500 | 1.1079 | | 1.1104 | 0.9627 | 600 | 1.1075 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1 - Datasets 3.1.0 - Tokenizers 0.20.3