--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/voxconverse model-index: - name: speaker-segmentation-fine-tuned-voxconverse-en results: [] --- # speaker-segmentation-fine-tuned-voxconverse-en This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/voxconverse dataset. It achieves the following results on the evaluation set: - Loss: 1.1250 - Der: 0.8257 - False Alarm: 0.3733 - Missed Detection: 0.3995 - Confusion: 0.0528 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.9302 | 1.0 | 791 | 0.9903 | 0.6790 | 0.5013 | 0.0965 | 0.0812 | | 0.8848 | 2.0 | 1582 | 1.0536 | 0.7965 | 0.3991 | 0.3409 | 0.0565 | | 0.8513 | 3.0 | 2373 | 1.0884 | 0.8114 | 0.4017 | 0.3528 | 0.0569 | | 0.7926 | 4.0 | 3164 | 1.1292 | 0.8378 | 0.3660 | 0.4219 | 0.0500 | | 0.8147 | 5.0 | 3955 | 1.1250 | 0.8257 | 0.3733 | 0.3995 | 0.0528 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.2.0+cu121 - Datasets 2.17.0 - Tokenizers 0.19.1