Taishi-N324 commited on
Commit
a076225
·
verified ·
1 Parent(s): 8abd9f7

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +226 -0
README.md ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ - ja
5
+ library_name: transformers
6
+ pipeline_tag: text-generation
7
+ license: llama3
8
+ model_type: llama
9
+ ---
10
+
11
+ # Llama3 Swallow
12
+
13
+ Our Swallow model has undergone continual pre-training from the [Llama 3 family](https://huggingface.co/collections/meta-llama/meta-llama-3-66214712577ca38149ebb2b6), primarily with the addition of Japanese language data. The Instruct versions use supervised fine-tuning (SFT) and Chat Vector. Links to other models can be found in the index.
14
+
15
+
16
+ # Model Release Updates
17
+
18
+ We are excited to share the release schedule for our latest models:
19
+ - **July 1, 2024**: Released the [Llama-3-Swallow-8B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1), [Llama-3-Swallow-8B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1), [Llama-3-Swallow-70B-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-v0.1), and [Llama-3-Swallow-70B-Instruct-v0.1](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-Instruct-v0.1).
20
+
21
+ ## Swallow Model Index
22
+
23
+ |Model|Llama-3-Swallow|Llama3 Swallow instruct|
24
+ |---|---|---|
25
+ |8B| [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-8B-Instruct-v0.1) |
26
+ |70B| [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-v0.1) | [Link](https://huggingface.co/tokyotech-llm/Llama-3-Swallow-70B-Instruct-v0.1) |
27
+
28
+ ![logo](./logo.png)
29
+
30
+ This repository provides large language models developed by [Swallow-LLM](https://swallow-llm.github.io/).
31
+ Read our [blog post](https://zenn.dev/tokyotech_lm/articles/f65989d76baf2c).
32
+
33
+ ## Model Details
34
+
35
+ * **Model type**: Please refer to [Llama 3 MODEL_CARD](https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md) for details on the model architecture.
36
+ * **Language(s)**: Japanese English
37
+ * **Library**: [Megatron-LM](https://github.com/NVIDIA/Megatron-LM)
38
+ * **Tokenizer**: Please refer to [Llama 3 blog](https://ai.meta.com/blog/meta-llama-3/) for details on the tokenizer.
39
+ * **Contact**: swallow[at]nlp.c.titech.ac.jp
40
+
41
+ ## Model Performance
42
+
43
+ ### Japanese tasks
44
+
45
+ |Model|Size|JCom.|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|JMMLU|JHumanEval|Ja Avg|
46
+ |---|---|---|---|---|---|---|---|---|---|---|---|---|
47
+ | | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot|5-shot|0-shot| |
48
+ | | |EM acc|Char-F1|Char-F1|Char-F1|ROUGE-2|EM acc|BLEU|BLEU|EM acc|pass@1| |
49
+ |karakuri-lm-70b-chat-v0.1|70B|0.8847|0.5139|0.5668|0.9096|0.1369|0.2800|0.2526|0.2095|0.4648|0.2354|0.4454|
50
+ |Meta-Llama-3-70B-Instruct|70B|0.9419|0.6114|0.5506|0.9164|0.1912|0.7200|0.2708|0.2350|0.6789|0.6610|0.5777|
51
+ |Llama-3-Swallow-70B-Instruct-v0.1|70B|0.9607|0.6188|0.6026|0.9236|0.1389|0.6560|0.2724|0.2532|0.6572|0.6000|0.5683|
52
+ |Qwen2-72B-Instruct|72B|0.9634|0.6268|0.5418|0.9210|0.1644|0.7840|0.2592|0.2327|0.7713|0.6909|0.5955|
53
+
54
+ ### English tasks
55
+
56
+ |Model|Size|OpenBookQA|TriviaQA|HellaSWAG|SQuAD2.0|XWINO|MMLU|GSM8K|BBH|HumanEval|EnAvg|
57
+ |---|---|---|---|---|---|---|---|---|---|---|---|
58
+ |||4-shot|4-shot|4-shot|4-shot|4-shot|5-shot|4-shot|3-shot|0-shot||
59
+ |||Acc|EMacc|Acc|EMacc|Acc|Acc|EMacc|CoTEMAcc|pass@1||
60
+ |karakuri-lm-70b-chat-v0.1|70B|0.4100|0.6873|0.6315|0.3677|0.9049|0.5941|0.3882|0.5724|0.2305|0.5319|
61
+ |Meta-Llama-3-70B-Instruct|70B|00.4400|0.7999|0.6552|0.4024|0.9127|0.7992|0.9052|0.8326|0.7555|0.7225|
62
+ |Llama-3-Swallow-70B-Instruct-v0.1|70B|0.4520|0.8174|0.6758|0.4050|0.9230|0.7883|0.8688|0.8152|0.6890|0.7150|
63
+ |Qwen2-72B-Instruct|72B|0.4360|0.7588|0.6857|0.3913|0.9110|0.8391|0.8499|0.2436|0.6939|0.6455|
64
+
65
+ ## MT-Bench JA
66
+
67
+ |Model|Size|coding|extraction|humanities|math|reasoning|roleplay|stem|writing|JMTAvg|
68
+ |---|---|---|---|---|---|---|---|---|---|---|
69
+ |karakuri-lm-70b-chat-v0.1|70B|0.2804|0.5862|0.6240|0.2934|0.4183|0.5530|0.4859|0.5964|0.4797|
70
+ |Meta-Llama-3-70B-Instruct|70B|0.5969|0.8410|0.7120|0.4481|0.4884|0.7117|0.6510|0.6900|0.6424|
71
+ |Llama-3-Swallow-70B-Instruct-v0.1|70B|0.5269|0.7250|0.5690|0.4669|0.6121|0.6238|0.5533|0.5698|0.5809|
72
+ |Qwen2-72B-Instruct|72B|0.5699|0.7858|0.8222|0.5096|0.7032|0.7963|0.7728|0.8223|0.7228|
73
+ |GPT-3.5(gpt-3.5-turbo-0125)| |0.6851|0.7641|0.7414|0.5522|0.5128|0.7104|0.6266|0.7361|0.6661|
74
+ |GPT-4o(gpt-4o-2024-05-13)| |0.7296|0.8540|0.8646|0.6641|0.6661|0.8274|0.8184|0.8085|0.7791|
75
+
76
+ ## Evaluation Benchmarks
77
+
78
+ ### Japanese evaluation benchmarks
79
+
80
+ We used llm-jp-eval(v1.3.0), JP Language Model Evaluation Harness(commit #9b42d41) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
81
+
82
+ - Multiple-choice question answering (JCommonsenseQA [Kurihara et al., 2022])
83
+ - Open-ended question answering (JEMHopQA [Ishii et al., 2024])
84
+ - Open-ended question answering (NIILC [関根, 2003])
85
+ - Machine reading comprehension (JSQuAD [Kurihara et al., 2022])
86
+ - Automatic summarization (XL-Sum [Hasan et al., 2021])
87
+ - Machine translation (WMT2020 ja-en [Barrault et al., 2020])
88
+ - Machine translation (WMT2020 en-ja [Barrault et al., 2020])
89
+ - Mathematical reasoning (MGSM [Shi et al., 2023])
90
+ - Academic exams (JMMLU [尹ら, 2024])
91
+ - Code generation (JHumanEval [佐藤ら, 2024])
92
+
93
+ ### English evaluation benchmarks
94
+
95
+ We used the Language Model Evaluation Harness(v.0.4.2) and Code Generation LM Evaluation Harness(commit #0261c52). The details are as follows:
96
+
97
+ - Multiple-choice question answering (OpenBookQA [Mihaylov et al., 2018])
98
+ - Open-ended question answering (TriviaQA [Joshi et al., 2017])
99
+ - Machine reading comprehension (SQuAD2 [Rajpurkar et al., 2018])
100
+ - Commonsense reasoning (XWINO [Tikhonov and Ryabinin, 2021])
101
+ - Natural language inference (HellaSwag [Zellers et al., 2019])
102
+ - Mathematical reasoning (GSM8K [Cobbe et al., 2021])
103
+ - Reasoning (BBH (BIG-Bench-Hard) [Suzgun et al., 2023])
104
+ - Academic exams (MMLU [Hendrycks et al., 2021])
105
+ - Code generation (HumanEval [Chen et al., 2021])
106
+
107
+ ### MT-Bench JA
108
+
109
+ We used [Japanese MT-Bench](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question) to assess the instruction-following capabilities of models.
110
+ We utilized the following settings:
111
+
112
+ - Implemantation: FastChat [Zheng+, 2023] (commit #e86e70d0)
113
+ - Question: [Nejumi LLM-Leaderboard NEO, mtbench_ja_question_v3](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_question/v3)
114
+ - Reference Answer: [Nejumi LLM-Leaderboard NEO, mtbench_ja_referenceanswer_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_referenceanswer/v1)
115
+ - Prompt for Judge: [Nejumi LLM-Lederboard NEO, mtbench_ja_prompt_v1](https://wandb.ai/wandb-japan/llm-leaderboard/artifacts/dataset/mtbench_ja_prompt/v1)
116
+ - Judge: `gpt-4-1106-preview`
117
+ - Scoring: Absolute scale normalized to a 0-1 range, averaged over five runs.
118
+
119
+ ## Usage
120
+
121
+ ```sh
122
+ pip install vllm
123
+ ```
124
+
125
+ ```python
126
+ from transformers import AutoTokenizer
127
+ from vllm import LLM, SamplingParams
128
+
129
+ model_name = "tokyotech-llm/Llama-3-Swallow-70B-Instruct-v0.1"
130
+
131
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
132
+ llm = LLM(
133
+ model=model_name,
134
+ tensor_parallel_size=4,
135
+ )
136
+
137
+ sampling_params = SamplingParams(
138
+ temperature=0.6, top_p=0.9, max_tokens=512, stop="<|eot_id|>"
139
+ )
140
+
141
+
142
+ message = [
143
+ {"role": "system", "content": "あなたは誠実で優秀な日本人のアシスタントです。"},
144
+ {
145
+ "role": "user",
146
+ "content": "東京の夜空に打ち上がっている花火の下、向かい合っている燕とラマの温かい物語を書いてください。",
147
+ },
148
+ ]
149
+ prompt = tokenizer.apply_chat_template(
150
+ message, tokenize=False, add_generation_prompt=True
151
+ )
152
+
153
+ output = llm.generate(prompt, sampling_params)
154
+
155
+ print(output[0].outputs[0].text)
156
+
157
+ ```
158
+
159
+ ## Training Datasets
160
+
161
+ ### Instruction Tuning
162
+
163
+ The following datasets were used for the instruction tuning.
164
+
165
+ - [OpenAssistant Conversations Dataset EN top-1 thread](https://huggingface.co/datasets/OpenAssistant/oasst2)
166
+ - [OpenAssistant Conversations Dataset](https://huggingface.co/datasets/llm-jp/oasst1-21k-ja) was used, where human utterances are included but the responses are not used. Instead, the responses were generated using the [Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) model.
167
+
168
+
169
+ ## Risks and Limitations
170
+
171
+ The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
172
+
173
+ ## Acknowledgements
174
+
175
+ We thank Meta Research for releasing Llama 3 under an open license for others to build on.
176
+
177
+ Our project is supported by the [Large Generative AI Development Support Program](https://abci.ai/en/link/lfm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
178
+
179
+ ## License
180
+
181
+ [META LLAMA 3 COMMUNITY LICENSE](https://llama.meta.com/llama3/license/)
182
+
183
+ ## Authors
184
+
185
+ Here are the team members:
186
+ - From [Tokyo Institute of Technology Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
187
+ - [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
188
+ - [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
189
+ - [Youmi Ma](https://www.nlp.c.titech.ac.jp/member/youmi.en.html)
190
+ - [Koki Maeda](https://sites.google.com/view/silviase)
191
+ - [Kakeru Hattori](https://aya-se.vercel.app/)
192
+ - [Masanari Ohi](https://sites.google.com/view/masanariohi)
193
+ - [Taihei Shiotani](https://github.com/inatoihs)
194
+ - [Koshiro Saito](https://sites.google.com/view/koshiro-saito)
195
+ - From [Tokyo Institute of Technology YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
196
+ - [Rio Yokota](https://twitter.com/rioyokota)
197
+ - [Kazuki Fujii](https://twitter.com/okoge_kaz)
198
+ - [Taishi Nakamura](https://twitter.com/Setuna7777_2)
199
+ - [Takumi Okamoto](https://www.linkedin.com/in/takumi-okamoto)
200
+ - [Ishida Shigeki](https://www.wantedly.com/id/reborn27)
201
+ - From [Artificial Intelligence Research Center, AIST, Japan](https://www.airc.aist.go.jp/en/teams/), the following members:
202
+ - [Hiroya Takamura](https://sites.google.com/view/hjtakamura)
203
+
204
+ ## How to Cite
205
+
206
+ If you find our work helpful, please feel free to cite us.
207
+
208
+ ```tex
209
+ @misc{llama3swallow,
210
+ title={Llama 3 Swallow},
211
+ url={https://swallow-llm.github.io/llama3-swallow.en.html},
212
+ author={Swallow LLM},
213
+ year={2024},
214
+ }
215
+ ```
216
+
217
+ ### Citations
218
+
219
+ ```tex
220
+ @article{llama3modelcard,
221
+ title={Llama 3 Model Card},
222
+ author={AI@Meta},
223
+ year={2024},
224
+ url = {https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md}
225
+ }
226
+ ```