--- tags: - image-to-text - image-captioning language: - ru metrics: - bleu library_name: transformers --- # First image captioning model for russian language vit-rugpt2-image-captioning This is an image captioning model trained on translated version (en-ru) of dataset COCO2014. # Model Details Model was initialized `google/vit-base-patch16-224-in21k` for encoder and `sberbank-ai/rugpt3large_based_on_gpt2` for decoder. # Metrics on test data * Bleu: 8.672 * Bleu precision 1: 30.567 * Bleu precision 2: 7.895 * Bleu precision 3: 3.261 # Sample running code ```python from transformers import VisionEncoderDecoderModel, ViTFeatureExtractor, AutoTokenizer import torch from PIL import Image model = VisionEncoderDecoderModel.from_pretrained("vit-rugpt2-image-captioning") feature_extractor = ViTFeatureExtractor.from_pretrained("vit-rugpt2-image-captioning") tokenizer = AutoTokenizer.from_pretrained("vit-rugpt2-image-captioning") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) max_length = 16 num_beams = 4 gen_kwargs = {"max_length": max_length, "num_beams": num_beams} def predict_caption(image_paths): images = [] for image_path in image_paths: i_image = Image.open(image_path) if i_image.mode != "RGB": i_image = i_image.convert(mode="RGB") images.append(i_image) pixel_values = feature_extractor(images=images, return_tensors="pt").pixel_values pixel_values = pixel_values.to(device) output_ids = model.generate(pixel_values, **gen_kwargs) preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) preds = [pred.strip() for pred in preds] return preds predict_caption(['train2014/COCO_train2014_000000295442.jpg']) # ['Самолет на взлетно-посадочной полосе аэропорта.'] ``` # Sample running code using transformers pipeline ```python from transformers import pipeline image_to_text = pipeline("image-to-text", model="vit-rugpt2-image-captioning") image_to_text("train2014/COCO_train2014_000000296754.jpg") # [{'generated_text': 'Человек идет по улице с зонтом.'}] ``` # Contact for any help * https://huggingface.co/tuman * https://github.com/tumanov-a * https://t.me/tumanov_av