--- license: mit datasets: - vishnun/CodevsNL language: - en metrics: - accuracy library_name: transformers pipeline_tag: text-classification tags: - code - nli --- ## PreFace Code vs Natural language classification using bert-small from prajwall, below are the metrics achieved ## Training Metrics | Epoch | Training Loss | Validation Loss | Accuracy | |-------|---------------|-----------------|----------| | 1 | 0.022500 | 0.012705 | 0.997203 | | 2 | 0.008700 | 0.013107 | 0.996880 | | 3 | 0.002700 | 0.014081 | 0.997633 | | 4 | 0.001800 | 0.010666 | 0.997526 | | 5 | 0.000900 | 0.010800 | 0.998063 | ## More - Github repo for installable python package: https://github.com/Vishnunkumar - Space on the extraction of code blocks from screenshots: https://huggingface.co/spaces/vishnun/SnapCode