--- license: apache-2.0 base_model: facebook/convnextv2-base-22k-384 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-randaug results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9470238095238095 --- # vit-base-randaug This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2287 - Accuracy: 0.9470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.6247 | 1.0 | 1099 | 0.3584 | 0.8982 | | 0.4589 | 2.0 | 2198 | 0.2780 | 0.9229 | | 0.3647 | 3.0 | 3297 | 0.2550 | 0.9264 | | 0.3042 | 4.0 | 4396 | 0.2381 | 0.9400 | | 0.2912 | 5.0 | 5495 | 0.2347 | 0.9419 | | 0.2464 | 6.0 | 6594 | 0.2269 | 0.9459 | | 0.2132 | 7.0 | 7693 | 0.2258 | 0.9483 | | 0.1956 | 8.0 | 8792 | 0.2222 | 0.9495 | | 0.1723 | 9.0 | 9891 | 0.2223 | 0.9499 | | 0.1558 | 10.0 | 10990 | 0.2220 | 0.9507 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2