--- license: apache-2.0 library_name: peft tags: - generated_from_trainer base_model: mistralai/Mixtral-8x7B-v0.1 model-index: - name: Mixtral-8x7b-Remixtral results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.3.0` ```yaml base_model: mistralai/Mixtral-8x7B-v0.1 model_type: AutoModelForCausalLM tokenizer_type: LlamaTokenizer trust_remote_code: true load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Open-Orca/SlimOrca type: sharegpt conversation: chatml dataset_prepared_path: last_run_prepared val_set_size: 0.005 output_dir: /wb-mixtral/slimorca-mixstral-8x7b save_total_limit: 1 hub_model_id: dataloader_num_workers: 8 dataloader_prefetch_factor: 4 dataloader_pin_memory: true adapter: qlora lora_model_dir: sequence_len: 8192 sample_packing: true pad_to_sequence_len: true lora_r: 64 lora_alpha: 32 lora_dropout: 0.1 lora_fan_in_fan_out: lora_modules_to_save: - lm_head - embed_tokens lora_target_linear: true wandb_project: mixtral wandb_entity: capecape wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 2 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.001 adam_beta2: 0.95 adam_epsilon: 0.00001 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 100 eval_steps: 0.05 save_steps: 0.25 debug: deepspeed: weight_decay: 0.1 fsdp: fsdp_config: special_tokens: eos_token: "<|im_end|>" tokens: - "<|im_start|>" ```

# Mixtral-8x7b-Remixtral This model is a fine-tuned version of [mistralai/Mixtral-8x7B-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-v0.1) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - num_epochs: 2 ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 2.1.1+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0 ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: True - bnb_4bit_compute_dtype: bfloat16 ### Framework versions - PEFT 0.6.0