--- pipeline_tag: text-to-video --- # AnimateLCM for Fast Video Generation in 4 steps. [AnimateLCM: Accelerating the Animation of Personalized Diffusion Models and Adapters with Decoupled Consistency Learning](https://arxiv.org/abs/2402.00769) by Fu-Yun Wang et al. ## We also support fast image-to-video generation, please see [AnimateLCM-SVD-xt](https://huggingface.co/wangfuyun/AnimateLCM-SVD-xt) and [AnimateLCM-I2V](https://huggingface.co/wangfuyun/AnimateLCM-I2V). For more details, please refer to our [[paper](https://arxiv.org/abs/2402.00769)] | [[code](https://github.com/G-U-N/AnimateLCM)] | [[proj-page](https://animatelcm.github.io/)] | [[civitai](https://civitai.com/models/290375/animatelcm-fast-video-generation)]. ## Using AnimateLCM with Diffusers ```python import torch from diffusers import AnimateDiffPipeline, LCMScheduler, MotionAdapter from diffusers.utils import export_to_gif adapter = MotionAdapter.from_pretrained("wangfuyun/AnimateLCM", torch_dtype=torch.float16) pipe = AnimateDiffPipeline.from_pretrained("emilianJR/epiCRealism", motion_adapter=adapter, torch_dtype=torch.float16) pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config, beta_schedule="linear") pipe.load_lora_weights("wangfuyun/AnimateLCM", weight_name="sd15_lora_beta.safetensors", adapter_name="lcm-lora") pipe.set_adapters(["lcm-lora"], [0.8]) pipe.enable_vae_slicing() pipe.enable_model_cpu_offload() output = pipe( prompt="A space rocket with trails of smoke behind it launching into space from the desert, 4k, high resolution", negative_prompt="bad quality, worse quality, low resolution", num_frames=16, guidance_scale=2.0, num_inference_steps=6, generator=torch.Generator("cpu").manual_seed(0), ) frames = output.frames[0] export_to_gif(frames, "animatelcm.gif") ```