wijayarobert commited on
Commit
ffe993c
·
verified ·
1 Parent(s): ea51a3a

Upload 7 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: microsoft/phi-2
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.11.1
adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/phi-2",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 256,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 128,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "dense",
24
+ "fc2",
25
+ "fc1",
26
+ "q_proj",
27
+ "k_proj",
28
+ "v_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8168c2b2a4b2bfef0baad52c096fb0a3de08329dc55bc2adf91f5a23da8cef3
3
+ size 377539280
config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/phi-2",
3
+ "architectures": [
4
+ "PhiForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 50256,
8
+ "embd_pdrop": 0.0,
9
+ "eos_token_id": 50256,
10
+ "freeze_mm_mlp_adapter": false,
11
+ "hidden_act": "gelu_new",
12
+ "hidden_size": 2560,
13
+ "image_aspect_ratio": "pad",
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 10240,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 2048,
18
+ "mm_hidden_size": 1152,
19
+ "mm_projector_lr": 2e-05,
20
+ "mm_projector_type": "mlp2x_gelu",
21
+ "mm_vision_tower": "google/siglip-so400m-patch14-384",
22
+ "model_type": "bunny-phi",
23
+ "num_attention_heads": 32,
24
+ "num_hidden_layers": 32,
25
+ "num_key_value_heads": 32,
26
+ "partial_rotary_factor": 0.4,
27
+ "qk_layernorm": false,
28
+ "resid_pdrop": 0.1,
29
+ "rope_scaling": null,
30
+ "rope_theta": 10000.0,
31
+ "tie_word_embeddings": false,
32
+ "tokenizer_model_max_length": 2048,
33
+ "tokenizer_padding_side": "right",
34
+ "torch_dtype": "float16",
35
+ "transformers_version": "4.41.2",
36
+ "tune_mm_mlp_adapter": false,
37
+ "unfreeze_vision_tower": false,
38
+ "use_cache": true,
39
+ "use_mm_proj": true,
40
+ "use_s2": false,
41
+ "vocab_size": 51200
42
+ }
log.txt ADDED
@@ -0,0 +1,257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2024-06-14 02:12:51,883] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
2
+  [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
3
+  [WARNING]  async_io: please install the libaio-dev package with apt
4
+  [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
5
+  [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
6
+  [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
7
+  [WARNING]  using untested triton version (2.3.0), only 1.0.0 is known to be compatible
8
+ [2024-06-14 02:12:52,556] [WARNING] [runner.py:202:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only.
9
+ [2024-06-14 02:12:52,556] [INFO] [runner.py:568:main] cmd = /home/robert/miniconda3/envs/bunny/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMV19 --master_addr=127.0.0.1 --master_port=29500 --enable_each_rank_log=None bunny/train/train.py --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 --deepspeed ./script/deepspeed/zero3.json --model_name_or_path microsoft/phi-2 --model_type phi-2 --version bunny --data_path ./data/finetune/bunny_695k.json --image_folder ./data/finetune/images --vision_tower google/siglip-so400m-patch14-384 --pretrain_mm_mlp_adapter ./checkpoints-pretrain/bunny-phi-2-pretrain/mm_projector.bin --mm_projector_type mlp2x_gelu --image_aspect_ratio pad --group_by_modality_length False --bf16 True --output_dir ./checkpoints-phi-2/bunny-lora-phi-2 --num_train_epochs 1 --per_device_train_batch_size 8 --per_device_eval_batch_size 4 --gradient_accumulation_steps 2 --evaluation_strategy no --save_strategy steps --save_steps 500 --save_total_limit 1 --learning_rate 2e-4 --weight_decay 0. --warmup_ratio 0.03 --lr_scheduler_type cosine --logging_steps 1 --tf32 True --model_max_length 2048 --gradient_checkpointing True --dataloader_num_workers 4 --lazy_preprocess True --report_to none
10
+ [2024-06-14 02:12:53,999] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
11
+  [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
12
+  [WARNING]  async_io: please install the libaio-dev package with apt
13
+  [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
14
+  [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
15
+  [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
16
+  [WARNING]  using untested triton version (2.3.0), only 1.0.0 is known to be compatible
17
+ [2024-06-14 02:12:54,677] [INFO] [launch.py:146:main] WORLD INFO DICT: {'localhost': [0, 1]}
18
+ [2024-06-14 02:12:54,677] [INFO] [launch.py:152:main] nnodes=1, num_local_procs=2, node_rank=0
19
+ [2024-06-14 02:12:54,677] [INFO] [launch.py:163:main] global_rank_mapping=defaultdict(<class 'list'>, {'localhost': [0, 1]})
20
+ [2024-06-14 02:12:54,677] [INFO] [launch.py:164:main] dist_world_size=2
21
+ [2024-06-14 02:12:54,677] [INFO] [launch.py:168:main] Setting CUDA_VISIBLE_DEVICES=0,1
22
+ [2024-06-14 02:12:54,678] [INFO] [launch.py:256:main] process 1400331 spawned with command: ['/home/robert/miniconda3/envs/bunny/bin/python', '-u', 'bunny/train/train.py', '--local_rank=0', '--lora_enable', 'True', '--lora_r', '128', '--lora_alpha', '256', '--mm_projector_lr', '2e-5', '--deepspeed', './script/deepspeed/zero3.json', '--model_name_or_path', 'microsoft/phi-2', '--model_type', 'phi-2', '--version', 'bunny', '--data_path', './data/finetune/bunny_695k.json', '--image_folder', './data/finetune/images', '--vision_tower', 'google/siglip-so400m-patch14-384', '--pretrain_mm_mlp_adapter', './checkpoints-pretrain/bunny-phi-2-pretrain/mm_projector.bin', '--mm_projector_type', 'mlp2x_gelu', '--image_aspect_ratio', 'pad', '--group_by_modality_length', 'False', '--bf16', 'True', '--output_dir', './checkpoints-phi-2/bunny-lora-phi-2', '--num_train_epochs', '1', '--per_device_train_batch_size', '8', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '2', '--evaluation_strategy', 'no', '--save_strategy', 'steps', '--save_steps', '500', '--save_total_limit', '1', '--learning_rate', '2e-4', '--weight_decay', '0.', '--warmup_ratio', '0.03', '--lr_scheduler_type', 'cosine', '--logging_steps', '1', '--tf32', 'True', '--model_max_length', '2048', '--gradient_checkpointing', 'True', '--dataloader_num_workers', '4', '--lazy_preprocess', 'True', '--report_to', 'none']
23
+ [2024-06-14 02:12:54,678] [INFO] [launch.py:256:main] process 1400332 spawned with command: ['/home/robert/miniconda3/envs/bunny/bin/python', '-u', 'bunny/train/train.py', '--local_rank=1', '--lora_enable', 'True', '--lora_r', '128', '--lora_alpha', '256', '--mm_projector_lr', '2e-5', '--deepspeed', './script/deepspeed/zero3.json', '--model_name_or_path', 'microsoft/phi-2', '--model_type', 'phi-2', '--version', 'bunny', '--data_path', './data/finetune/bunny_695k.json', '--image_folder', './data/finetune/images', '--vision_tower', 'google/siglip-so400m-patch14-384', '--pretrain_mm_mlp_adapter', './checkpoints-pretrain/bunny-phi-2-pretrain/mm_projector.bin', '--mm_projector_type', 'mlp2x_gelu', '--image_aspect_ratio', 'pad', '--group_by_modality_length', 'False', '--bf16', 'True', '--output_dir', './checkpoints-phi-2/bunny-lora-phi-2', '--num_train_epochs', '1', '--per_device_train_batch_size', '8', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '2', '--evaluation_strategy', 'no', '--save_strategy', 'steps', '--save_steps', '500', '--save_total_limit', '1', '--learning_rate', '2e-4', '--weight_decay', '0.', '--warmup_ratio', '0.03', '--lr_scheduler_type', 'cosine', '--logging_steps', '1', '--tf32', 'True', '--model_max_length', '2048', '--gradient_checkpointing', 'True', '--dataloader_num_workers', '4', '--lazy_preprocess', 'True', '--report_to', 'none']
24
+ [2024-06-14 02:12:59,036] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
25
+ [2024-06-14 02:12:59,043] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)
26
+  [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
27
+  [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.
28
+  [WARNING]  async_io: please install the libaio-dev package with apt
29
+  [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
30
+  [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
31
+  [WARNING]  async_io: please install the libaio-dev package with apt
32
+  [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.
33
+  [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH
34
+  [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
35
+  [WARNING]  using untested triton version (2.3.0), only 1.0.0 is known to be compatible
36
+  [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3
37
+  [WARNING]  using untested triton version (2.3.0), only 1.0.0 is known to be compatible
38
+ [2024-06-14 02:12:59,215] [INFO] [comm.py:637:init_distributed] cdb=None
39
+ [2024-06-14 02:12:59,226] [INFO] [comm.py:637:init_distributed] cdb=None
40
+ [2024-06-14 02:12:59,226] [INFO] [comm.py:668:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl
41
+ [2024-06-14 02:13:01,597] [INFO] [partition_parameters.py:345:__exit__] finished initializing model - num_params = 452, num_elems = 2.78B
42
+ Adding LoRA adapters...
43
+ [2024-06-14 02:13:06,587] [INFO] [partition_parameters.py:345:__exit__] finished initializing model - num_params = 900, num_elems = 3.21B
44
+ Formatting inputs...Skip in lazy mode
45
+ Formatting inputs...Skip in lazy mode
46
+ Parameter Offload: Total persistent parameters: 1324480 in 540 params
47
+ {'loss': 1.4425, 'grad_norm': 0.942700758245986, 'learning_rate': 4.723452001250683e-08, 'epoch': 0.99}
48
+ {'loss': 1.0698, 'grad_norm': 5.386742649487362, 'learning_rate': 4.677708118508983e-08, 'epoch': 0.99}
49
+ {'loss': 1.0348, 'grad_norm': 0.6414032462502491, 'learning_rate': 4.632186764480517e-08, 'epoch': 0.99}
50
+ {'loss': 1.4007, 'grad_norm': 0.8399374153966813, 'learning_rate': 4.586887940176699e-08, 'epoch': 0.99}
51
+ {'loss': 1.013, 'grad_norm': 1.1784298059039426, 'learning_rate': 4.54181164660894e-08, 'epoch': 0.99}
52
+ {'loss': 1.4703, 'grad_norm': 0.9445735664284673, 'learning_rate': 4.496957884778663e-08, 'epoch': 0.99}
53
+ {'loss': 1.357, 'grad_norm': 0.8032126350975317, 'learning_rate': 4.452326655685068e-08, 'epoch': 0.99}
54
+ {'loss': 1.0204, 'grad_norm': 1.1730182937411677, 'learning_rate': 4.4079179603218055e-08, 'epoch': 0.99}
55
+ {'loss': 1.3475, 'grad_norm': 1.2582671967211982, 'learning_rate': 4.363731799676973e-08, 'epoch': 0.99}
56
+ {'loss': 1.0274, 'grad_norm': 1.7294591582235157, 'learning_rate': 4.319768174735339e-08, 'epoch': 0.99}
57
+ {'loss': 1.1504, 'grad_norm': 1.0469817450846388, 'learning_rate': 4.2760270864738994e-08, 'epoch': 0.99}
58
+ {'loss': 1.1542, 'grad_norm': 0.8339323652457116, 'learning_rate': 4.2325085358696504e-08, 'epoch': 0.99}
59
+ {'loss': 1.4128, 'grad_norm': 0.9148113247697388, 'learning_rate': 4.189212523888486e-08, 'epoch': 0.99}
60
+ {'loss': 1.0067, 'grad_norm': 1.072223405558702, 'learning_rate': 4.14613905149519e-08, 'epoch': 0.99}
61
+ {'loss': 1.3823, 'grad_norm': 0.7933852853971807, 'learning_rate': 4.103288119648996e-08, 'epoch': 0.99}
62
+ {'loss': 1.1281, 'grad_norm': 0.7261390721292842, 'learning_rate': 4.060659729303584e-08, 'epoch': 0.99}
63
+ {'loss': 1.1811, 'grad_norm': 0.9003791199373986, 'learning_rate': 4.018253881409306e-08, 'epoch': 0.99}
64
+ {'loss': 1.3176, 'grad_norm': 1.1947955753146302, 'learning_rate': 3.976070576908742e-08, 'epoch': 0.99}
65
+ {'loss': 1.2388, 'grad_norm': 6.846984030349887, 'learning_rate': 3.934109816741138e-08, 'epoch': 0.99}
66
+ {'loss': 1.2566, 'grad_norm': 2.6987845022894623, 'learning_rate': 3.8923716018401943e-08, 'epoch': 0.99}
67
+ {'loss': 0.9042, 'grad_norm': 0.7541139281044368, 'learning_rate': 3.850855933137387e-08, 'epoch': 0.99}
68
+ {'loss': 1.243, 'grad_norm': 3.311043853373493, 'learning_rate': 3.8095628115553114e-08, 'epoch': 0.99}
69
+ {'loss': 1.147, 'grad_norm': 0.9586566637745106, 'learning_rate': 3.7684922380132324e-08, 'epoch': 0.99}
70
+ {'loss': 1.0982, 'grad_norm': 0.9359946330825151, 'learning_rate': 3.727644213424863e-08, 'epoch': 0.99}
71
+ {'loss': 1.2446, 'grad_norm': 0.9731633495925633, 'learning_rate': 3.687018738701697e-08, 'epoch': 0.99}
72
+ {'loss': 1.4469, 'grad_norm': 1.4342280541565777, 'learning_rate': 3.646615814747456e-08, 'epoch': 0.99}
73
+ {'loss': 1.2553, 'grad_norm': 1.3033387849211402, 'learning_rate': 3.6064354424603096e-08, 'epoch': 0.99}
74
+ {'loss': 1.5003, 'grad_norm': 0.7709586580426135, 'learning_rate': 3.566477622736208e-08, 'epoch': 0.99}
75
+ {'loss': 1.0965, 'grad_norm': 1.0000894519468093, 'learning_rate': 3.526742356463331e-08, 'epoch': 0.99}
76
+ {'loss': 1.4456, 'grad_norm': 1.1231825108623885, 'learning_rate': 3.487229644528744e-08, 'epoch': 0.99}
77
+ {'loss': 1.2185, 'grad_norm': 1.392070634372661, 'learning_rate': 3.447939487809526e-08, 'epoch': 0.99}
78
+ {'loss': 1.0054, 'grad_norm': 0.9414901630248458, 'learning_rate': 3.408871887182752e-08, 'epoch': 0.99}
79
+ {'loss': 1.3494, 'grad_norm': 0.784432037613797, 'learning_rate': 3.370026843515506e-08, 'epoch': 0.99}
80
+ {'loss': 1.4281, 'grad_norm': 1.1215894921327614, 'learning_rate': 3.3314043576748724e-08, 'epoch': 0.99}
81
+ {'loss': 1.481, 'grad_norm': 0.7832511915640359, 'learning_rate': 3.293004430520163e-08, 'epoch': 0.99}
82
+ {'loss': 1.0621, 'grad_norm': 0.8330566484962368, 'learning_rate': 3.2548270629051415e-08, 'epoch': 0.99}
83
+ {'loss': 1.1758, 'grad_norm': 1.0721497039114856, 'learning_rate': 3.216872255681347e-08, 'epoch': 0.99}
84
+ {'loss': 1.5477, 'grad_norm': 0.7260520718611978, 'learning_rate': 3.1791400096925495e-08, 'epoch': 0.99}
85
+ {'loss': 1.5049, 'grad_norm': 1.1098146309429233, 'learning_rate': 3.141630325780298e-08, 'epoch': 0.99}
86
+ {'loss': 1.0742, 'grad_norm': 1.8347651432396874, 'learning_rate': 3.10434320477726e-08, 'epoch': 0.99}
87
+ {'loss': 1.1936, 'grad_norm': 2.2776015845200916, 'learning_rate': 3.067278647516103e-08, 'epoch': 0.99}
88
+ {'loss': 1.2198, 'grad_norm': 1.0355190821448266, 'learning_rate': 3.030436654820612e-08, 'epoch': 0.99}
89
+ {'loss': 1.1147, 'grad_norm': 2.4355829952567385, 'learning_rate': 2.993817227511242e-08, 'epoch': 0.99}
90
+ {'loss': 1.3694, 'grad_norm': 0.984979819700457, 'learning_rate': 2.9574203664040068e-08, 'epoch': 0.99}
91
+ {'loss': 1.4798, 'grad_norm': 1.60805779871656, 'learning_rate': 2.921246072307149e-08, 'epoch': 0.99}
92
+ {'loss': 1.2715, 'grad_norm': 1.3650514569339907, 'learning_rate': 2.8852943460289107e-08, 'epoch': 0.99}
93
+ {'loss': 1.3787, 'grad_norm': 1.2625718262332608, 'learning_rate': 2.8495651883675424e-08, 'epoch': 0.99}
94
+ {'loss': 1.3049, 'grad_norm': 0.8021584725122108, 'learning_rate': 2.8140586001190737e-08, 'epoch': 0.99}
95
+ {'loss': 1.1923, 'grad_norm': 0.8168092830830008, 'learning_rate': 2.7787745820739842e-08, 'epoch': 0.99}
96
+ {'loss': 1.1541, 'grad_norm': 0.8427335930115224, 'learning_rate': 2.743713135018311e-08, 'epoch': 0.99}
97
+ {'loss': 1.1531, 'grad_norm': 1.2501986070685778, 'learning_rate': 2.708874259732541e-08, 'epoch': 0.99}
98
+ {'loss': 1.3751, 'grad_norm': 0.8944408353826961, 'learning_rate': 2.6742579569916104e-08, 'epoch': 0.99}
99
+ {'loss': 1.3265, 'grad_norm': 0.8662694939770277, 'learning_rate': 2.6398642275660135e-08, 'epoch': 0.99}
100
+ {'loss': 1.0567, 'grad_norm': 1.0111099240739703, 'learning_rate': 2.6056930722229145e-08, 'epoch': 0.99}
101
+ {'loss': 1.0349, 'grad_norm': 0.9690077754479983, 'learning_rate': 2.571744491721706e-08, 'epoch': 0.99}
102
+ {'loss': 1.4695, 'grad_norm': 0.6430214364296446, 'learning_rate': 2.53801848681956e-08, 'epoch': 0.99}
103
+ {'loss': 1.4982, 'grad_norm': 0.7420680068160221, 'learning_rate': 2.5045150582658773e-08, 'epoch': 0.99}
104
+ {'loss': 0.8213, 'grad_norm': 3.67220224157274, 'learning_rate': 2.4712342068067273e-08, 'epoch': 0.99}
105
+ {'loss': 1.2143, 'grad_norm': 2.50986289612842, 'learning_rate': 2.4381759331837395e-08, 'epoch': 0.99}
106
+ {'loss': 1.2333, 'grad_norm': 0.8257838615002613, 'learning_rate': 2.4053402381318814e-08, 'epoch': 0.99}
107
+ {'loss': 1.1157, 'grad_norm': 1.205163641885224, 'learning_rate': 2.3727271223839e-08, 'epoch': 0.99}
108
+ {'loss': 0.9462, 'grad_norm': 0.8336985402702446, 'learning_rate': 2.3403365866647707e-08, 'epoch': 0.99}
109
+ {'loss': 1.3943, 'grad_norm': 1.4013151797733856, 'learning_rate': 2.3081686316961393e-08, 'epoch': 0.99}
110
+ {'loss': 1.3747, 'grad_norm': 0.7985012764218158, 'learning_rate': 2.276223258192989e-08, 'epoch': 0.99}
111
+ {'loss': 0.9557, 'grad_norm': 1.1690954634900848, 'learning_rate': 2.2445004668680824e-08, 'epoch': 0.99}
112
+ {'loss': 0.9685, 'grad_norm': 0.9623389466769615, 'learning_rate': 2.213000258426412e-08, 'epoch': 0.99}
113
+ {'loss': 0.9524, 'grad_norm': 2.1843226135301275, 'learning_rate': 2.1817226335696384e-08, 'epoch': 0.99}
114
+ {'loss': 1.0139, 'grad_norm': 0.8918643218214802, 'learning_rate': 2.1506675929938713e-08, 'epoch': 0.99}
115
+ {'loss': 1.5443, 'grad_norm': 0.789604746189584, 'learning_rate': 2.11983513739189e-08, 'epoch': 0.99}
116
+ {'loss': 1.1413, 'grad_norm': 1.2709132143502189, 'learning_rate': 2.089225267447592e-08, 'epoch': 0.99}
117
+ {'loss': 1.1142, 'grad_norm': 0.9530093706340396, 'learning_rate': 2.0588379838448745e-08, 'epoch': 0.99}
118
+ {'loss': 1.4164, 'grad_norm': 0.8921788520759392, 'learning_rate': 2.0286732872598634e-08, 'epoch': 0.99}
119
+ {'loss': 1.1639, 'grad_norm': 2.4443203418969848, 'learning_rate': 1.9987311783631335e-08, 'epoch': 0.99}
120
+ {'loss': 1.3764, 'grad_norm': 1.1668353021113063, 'learning_rate': 1.9690116578219286e-08, 'epoch': 0.99}
121
+ {'loss': 1.2973, 'grad_norm': 1.010623947500593, 'learning_rate': 1.9395147262968317e-08, 'epoch': 0.99}
122
+ {'loss': 1.2691, 'grad_norm': 0.8898451427839096, 'learning_rate': 1.9102403844462047e-08, 'epoch': 0.99}
123
+ {'loss': 1.4245, 'grad_norm': 0.7914659980565069, 'learning_rate': 1.8811886329217487e-08, 'epoch': 0.99}
124
+ {'loss': 1.362, 'grad_norm': 0.7832894858322704, 'learning_rate': 1.8523594723685032e-08, 'epoch': 0.99}
125
+ {'loss': 1.3057, 'grad_norm': 0.8955949346465102, 'learning_rate': 1.8237529034292876e-08, 'epoch': 0.99}
126
+ {'loss': 1.0109, 'grad_norm': 0.6765891435245239, 'learning_rate': 1.7953689267413698e-08, 'epoch': 0.99}
127
+ {'loss': 1.2171, 'grad_norm': 0.970128827793069, 'learning_rate': 1.7672075429364665e-08, 'epoch': 0.99}
128
+ {'loss': 1.161, 'grad_norm': 1.2721599430804214, 'learning_rate': 1.7392687526407437e-08, 'epoch': 0.99}
129
+ {'loss': 1.2052, 'grad_norm': 1.1817903579639597, 'learning_rate': 1.711552556477036e-08, 'epoch': 0.99}
130
+ {'loss': 1.065, 'grad_norm': 1.059992984071674, 'learning_rate': 1.6840589550626284e-08, 'epoch': 0.99}
131
+ {'loss': 1.4083, 'grad_norm': 0.8051901491068411, 'learning_rate': 1.656787949009253e-08, 'epoch': 0.99}
132
+ {'loss': 1.3522, 'grad_norm': 0.9453133488951609, 'learning_rate': 1.629739538924202e-08, 'epoch': 0.99}
133
+ {'loss': 1.3357, 'grad_norm': 1.5231809399877834, 'learning_rate': 1.602913725408106e-08, 'epoch': 0.99}
134
+ {'loss': 1.191, 'grad_norm': 0.7759721620339927, 'learning_rate': 1.576310509060486e-08, 'epoch': 0.99}
135
+ {'loss': 1.2079, 'grad_norm': 0.9574306333903998, 'learning_rate': 1.5499298904730897e-08, 'epoch': 0.99}
136
+ {'loss': 1.3609, 'grad_norm': 0.8984157351262388, 'learning_rate': 1.5237718702321157e-08, 'epoch': 0.99}
137
+ {'loss': 1.3661, 'grad_norm': 1.2733647977353184, 'learning_rate': 1.4978364489215413e-08, 'epoch': 0.99}
138
+ {'loss': 1.2004, 'grad_norm': 1.5219904926183827, 'learning_rate': 1.472123627117572e-08, 'epoch': 0.99}
139
+ {'loss': 1.3272, 'grad_norm': 0.9349084111819203, 'learning_rate': 1.446633405393083e-08, 'epoch': 0.99}
140
+ {'loss': 1.0451, 'grad_norm': 2.5778124045810222, 'learning_rate': 1.421365784314288e-08, 'epoch': 0.99}
141
+ {'loss': 1.0895, 'grad_norm': 0.9365064782027099, 'learning_rate': 1.3963207644462906e-08, 'epoch': 0.99}
142
+ {'loss': 1.1102, 'grad_norm': 0.8330735209837793, 'learning_rate': 1.3714983463442022e-08, 'epoch': 0.99}
143
+ {'loss': 1.2836, 'grad_norm': 0.9561616455105378, 'learning_rate': 1.346898530562024e-08, 'epoch': 0.99}
144
+ [2024-06-14 02:30:38,728] [WARNING] [stage3.py:2069:step] 1 pytorch allocator cache flushes since last step. this happens when there is high memory pressure and is detrimental to performance. if this is happening frequently consider adjusting settings to reduce memory consumption. If you are unable to make the cache flushes go away consider adding get_accelerator().empty_cache() calls in your training loop to ensure that all ranks flush their caches at the same time
145
+ {'loss': 1.2363, 'grad_norm': 0.7071857362610257, 'learning_rate': 1.3225213176482065e-08, 'epoch': 0.99}
146
+ {'loss': 1.2631, 'grad_norm': 0.8004012362110456, 'learning_rate': 1.298366708143428e-08, 'epoch': 1.0}
147
+ {'loss': 1.5518, 'grad_norm': 0.8141940190741423, 'learning_rate': 1.2744347025861469e-08, 'epoch': 1.0}
148
+ {'loss': 1.3571, 'grad_norm': 1.0142219264331416, 'learning_rate': 1.2507253015103804e-08, 'epoch': 1.0}
149
+ {'loss': 1.1516, 'grad_norm': 0.9337790912361478, 'learning_rate': 1.227238505442374e-08, 'epoch': 1.0}
150
+ {'loss': 1.5332, 'grad_norm': 1.0019159278288796, 'learning_rate': 1.203974314905043e-08, 'epoch': 1.0}
151
+ {'loss': 0.9523, 'grad_norm': 1.3255552639470847, 'learning_rate': 1.1809327304179717e-08, 'epoch': 1.0}
152
+ {'loss': 1.0178, 'grad_norm': 2.3569328810589836, 'learning_rate': 1.158113752492973e-08, 'epoch': 1.0}
153
+ {'loss': 1.0026, 'grad_norm': 0.9469794474905348, 'learning_rate': 1.1355173816385289e-08, 'epoch': 1.0}
154
+ {'loss': 1.3561, 'grad_norm': 1.0444323780434388, 'learning_rate': 1.1131436183564603e-08, 'epoch': 1.0}
155
+ {'loss': 1.0371, 'grad_norm': 0.8986112639676435, 'learning_rate': 1.0909924631463675e-08, 'epoch': 1.0}
156
+ {'loss': 1.2115, 'grad_norm': 2.373261525594255, 'learning_rate': 1.0690639165011895e-08, 'epoch': 1.0}
157
+ {'loss': 1.3309, 'grad_norm': 1.122171472399203, 'learning_rate': 1.0473579789083143e-08, 'epoch': 1.0}
158
+ {'loss': 1.1064, 'grad_norm': 1.8809967982797045, 'learning_rate': 1.0258746508517991e-08, 'epoch': 1.0}
159
+ {'loss': 1.3553, 'grad_norm': 0.6738030569641423, 'learning_rate': 1.00461393281015e-08, 'epoch': 1.0}
160
+ {'loss': 1.3224, 'grad_norm': 1.2808290035083636, 'learning_rate': 9.835758252552118e-09, 'epoch': 1.0}
161
+ {'loss': 1.1095, 'grad_norm': 1.053570231478655, 'learning_rate': 9.627603286566088e-09, 'epoch': 1.0}
162
+ {'loss': 1.3688, 'grad_norm': 1.163503084500989, 'learning_rate': 9.421674434773042e-09, 'epoch': 1.0}
163
+ {'loss': 1.1505, 'grad_norm': 2.5903259835818186, 'learning_rate': 9.2179717017693e-09, 'epoch': 1.0}
164
+ {'loss': 1.011, 'grad_norm': 1.3895324590981457, 'learning_rate': 9.016495092073474e-09, 'epoch': 1.0}
165
+ {'loss': 1.1866, 'grad_norm': 1.8823726980006361, 'learning_rate': 8.817244610170861e-09, 'epoch': 1.0}
166
+ {'loss': 1.299, 'grad_norm': 0.8503392238673622, 'learning_rate': 8.620220260513456e-09, 'epoch': 1.0}
167
+ {'loss': 1.3522, 'grad_norm': 0.8624416934110696, 'learning_rate': 8.42542204747554e-09, 'epoch': 1.0}
168
+ {'loss': 1.1821, 'grad_norm': 1.0867326324653512, 'learning_rate': 8.232849975398082e-09, 'epoch': 1.0}
169
+ {'loss': 1.4199, 'grad_norm': 0.8147434696121018, 'learning_rate': 8.042504048555444e-09, 'epoch': 1.0}
170
+ {'loss': 1.3494, 'grad_norm': 0.8654331092126935, 'learning_rate': 7.85438427121088e-09, 'epoch': 1.0}
171
+ {'loss': 1.1523, 'grad_norm': 1.6205454650407503, 'learning_rate': 7.668490647538828e-09, 'epoch': 1.0}
172
+ {'loss': 1.2058, 'grad_norm': 0.9633457313784664, 'learning_rate': 7.48482318166932e-09, 'epoch': 1.0}
173
+ {'loss': 1.0053, 'grad_norm': 0.805306176189691, 'learning_rate': 7.303381877699078e-09, 'epoch': 1.0}
174
+ {'loss': 1.1672, 'grad_norm': 2.0945837494826427, 'learning_rate': 7.124166739680416e-09, 'epoch': 1.0}
175
+ {'loss': 1.0993, 'grad_norm': 1.1790408885617623, 'learning_rate': 6.94717777157683e-09, 'epoch': 1.0}
176
+ {'loss': 1.3596, 'grad_norm': 3.2801472917143237, 'learning_rate': 6.772414977351816e-09, 'epoch': 1.0}
177
+ {'loss': 1.1421, 'grad_norm': 4.62041686026284, 'learning_rate': 6.599878360891154e-09, 'epoch': 1.0}
178
+ {'loss': 1.0906, 'grad_norm': 1.0338053298478405, 'learning_rate': 6.429567926025115e-09, 'epoch': 1.0}
179
+ {'loss': 1.2614, 'grad_norm': 0.9214427909361785, 'learning_rate': 6.2614836765506614e-09, 'epoch': 1.0}
180
+ {'loss': 1.2062, 'grad_norm': 0.9468374577747518, 'learning_rate': 6.095625616220346e-09, 'epoch': 1.0}
181
+ {'loss': 1.0961, 'grad_norm': 1.3576864307028402, 'learning_rate': 5.931993748709008e-09, 'epoch': 1.0}
182
+ {'loss': 1.263, 'grad_norm': 1.2507886070479686, 'learning_rate': 5.770588077669281e-09, 'epoch': 1.0}
183
+ {'loss': 1.2194, 'grad_norm': 0.6878309986692126, 'learning_rate': 5.611408606698287e-09, 'epoch': 1.0}
184
+ {'loss': 1.436, 'grad_norm': 0.8163139930922514, 'learning_rate': 5.4544553393376386e-09, 'epoch': 1.0}
185
+ {'loss': 1.2167, 'grad_norm': 0.7109340908969963, 'learning_rate': 5.2997282790734345e-09, 'epoch': 1.0}
186
+ {'loss': 0.9125, 'grad_norm': 1.6286097660220318, 'learning_rate': 5.147227429369572e-09, 'epoch': 1.0}
187
+ {'loss': 0.8081, 'grad_norm': 2.8495076490148104, 'learning_rate': 4.996952793590026e-09, 'epoch': 1.0}
188
+ {'loss': 1.0316, 'grad_norm': 1.8684533521782878, 'learning_rate': 4.848904375109875e-09, 'epoch': 1.0}
189
+ {'loss': 0.7153, 'grad_norm': 0.9122003848331615, 'learning_rate': 4.703082177215378e-09, 'epoch': 1.0}
190
+ {'loss': 1.1442, 'grad_norm': 0.8297542801866371, 'learning_rate': 4.559486203148388e-09, 'epoch': 1.0}
191
+ {'loss': 1.066, 'grad_norm': 1.099243554454167, 'learning_rate': 4.418116456106347e-09, 'epoch': 1.0}
192
+ {'loss': 1.5408, 'grad_norm': 0.7118212662014688, 'learning_rate': 4.278972939242287e-09, 'epoch': 1.0}
193
+ {'loss': 1.3404, 'grad_norm': 1.4362812302876498, 'learning_rate': 4.142055655653732e-09, 'epoch': 1.0}
194
+ {'loss': 1.0888, 'grad_norm': 1.3629430661994493, 'learning_rate': 4.0073646083715884e-09, 'epoch': 1.0}
195
+ {'loss': 1.112, 'grad_norm': 2.2100855393400276, 'learning_rate': 3.8748998004267676e-09, 'epoch': 1.0}
196
+ {'loss': 1.3644, 'grad_norm': 0.7158178246776601, 'learning_rate': 3.744661234739155e-09, 'epoch': 1.0}
197
+ {'loss': 1.3107, 'grad_norm': 0.942036119220107, 'learning_rate': 3.6166489142286377e-09, 'epoch': 1.0}
198
+ {'loss': 1.2474, 'grad_norm': 1.5908115889363665, 'learning_rate': 3.4908628417373857e-09, 'epoch': 1.0}
199
+ {'loss': 0.9509, 'grad_norm': 0.8861920310940888, 'learning_rate': 3.3673030200520594e-09, 'epoch': 1.0}
200
+ {'loss': 1.1007, 'grad_norm': 1.1194164105994997, 'learning_rate': 3.2459694519482162e-09, 'epoch': 1.0}
201
+ {'loss': 1.079, 'grad_norm': 1.7755772555508103, 'learning_rate': 3.1268621401125964e-09, 'epoch': 1.0}
202
+ {'loss': 1.0855, 'grad_norm': 0.8351181880154243, 'learning_rate': 3.009981087198632e-09, 'epoch': 1.0}
203
+ {'loss': 1.2608, 'grad_norm': 0.8626554454964646, 'learning_rate': 2.895326295804246e-09, 'epoch': 1.0}
204
+ {'loss': 1.0801, 'grad_norm': 0.9514880970684986, 'learning_rate': 2.7828977684940525e-09, 'epoch': 1.0}
205
+ {'loss': 1.1484, 'grad_norm': 0.7842554312013447, 'learning_rate': 2.672695507754952e-09, 'epoch': 1.0}
206
+ {'loss': 1.0309, 'grad_norm': 0.9639220640203608, 'learning_rate': 2.564719516062741e-09, 'epoch': 1.0}
207
+ {'loss': 1.0896, 'grad_norm': 5.893335510855347, 'learning_rate': 2.4589697958044e-09, 'epoch': 1.0}
208
+ {'loss': 1.0671, 'grad_norm': 1.237578097349438, 'learning_rate': 2.355446349333601e-09, 'epoch': 1.0}
209
+ {'loss': 1.2633, 'grad_norm': 3.309447811014566, 'learning_rate': 2.254149178959608e-09, 'epoch': 1.0}
210
+ {'loss': 1.5265, 'grad_norm': 1.1766115766294134, 'learning_rate': 2.155078286936174e-09, 'epoch': 1.0}
211
+ {'loss': 1.3161, 'grad_norm': 1.261377135630768, 'learning_rate': 2.058233675472643e-09, 'epoch': 1.0}
212
+ {'loss': 0.9197, 'grad_norm': 2.9265974640791073, 'learning_rate': 1.963615346733949e-09, 'epoch': 1.0}
213
+ {'loss': 1.2767, 'grad_norm': 1.124163723768451, 'learning_rate': 1.87122330279621e-09, 'epoch': 1.0}
214
+ {'loss': 0.9884, 'grad_norm': 0.8206219469866542, 'learning_rate': 1.781057545746645e-09, 'epoch': 1.0}
215
+ {'loss': 1.4566, 'grad_norm': 0.6893408698138835, 'learning_rate': 1.6931180775836553e-09, 'epoch': 1.0}
216
+ {'loss': 1.4497, 'grad_norm': 0.7513770563975293, 'learning_rate': 1.6074049002612335e-09, 'epoch': 1.0}
217
+ {'loss': 1.4434, 'grad_norm': 1.0794222136615717, 'learning_rate': 1.5239180156889633e-09, 'epoch': 1.0}
218
+ {'loss': 1.3901, 'grad_norm': 1.2735045093264037, 'learning_rate': 1.442657425720917e-09, 'epoch': 1.0}
219
+ {'loss': 1.0627, 'grad_norm': 1.083357360371921, 'learning_rate': 1.3636231321778602e-09, 'epoch': 1.0}
220
+ {'loss': 1.1931, 'grad_norm': 1.5561575605915832, 'learning_rate': 1.2868151368028435e-09, 'epoch': 1.0}
221
+ {'loss': 1.0351, 'grad_norm': 0.8498417639523637, 'learning_rate': 1.2122334413278146e-09, 'epoch': 1.0}
222
+ {'loss': 1.2696, 'grad_norm': 1.0869334696996453, 'learning_rate': 1.1398780473959037e-09, 'epoch': 1.0}
223
+ {'loss': 1.1768, 'grad_norm': 0.9256138759220954, 'learning_rate': 1.0697489566280362e-09, 'epoch': 1.0}
224
+ {'loss': 1.3349, 'grad_norm': 1.1068591098386078, 'learning_rate': 1.001846170567422e-09, 'epoch': 1.0}
225
+ {'loss': 0.9784, 'grad_norm': 0.7613604227444113, 'learning_rate': 9.361696907572714e-10, 'epoch': 1.0}
226
+ {'loss': 1.1655, 'grad_norm': 1.3884342450751241, 'learning_rate': 8.727195186297721e-10, 'epoch': 1.0}
227
+ {'loss': 1.3665, 'grad_norm': 0.7689778929243138, 'learning_rate': 8.114956556171116e-10, 'epoch': 1.0}
228
+ {'loss': 1.1323, 'grad_norm': 1.259485983943609, 'learning_rate': 7.524981030626598e-10, 'epoch': 1.0}
229
+ {'loss': 1.1608, 'grad_norm': 0.7771101060171148, 'learning_rate': 6.957268622986846e-10, 'epoch': 1.0}
230
+ {'loss': 1.1237, 'grad_norm': 1.288212435458082, 'learning_rate': 6.411819345908399e-10, 'epoch': 1.0}
231
+ {'loss': 1.2058, 'grad_norm': 1.0930381944300036, 'learning_rate': 5.888633211381667e-10, 'epoch': 1.0}
232
+ {'loss': 1.19, 'grad_norm': 1.1138745850551712, 'learning_rate': 5.387710231063991e-10, 'epoch': 1.0}
233
+ {'loss': 1.2528, 'grad_norm': 0.9071826069395514, 'learning_rate': 4.909050416168626e-10, 'epoch': 1.0}
234
+ {'loss': 1.18, 'grad_norm': 2.0569238529909164, 'learning_rate': 4.4526537774647324e-10, 'epoch': 1.0}
235
+ {'loss': 1.2705, 'grad_norm': 0.7839265892155309, 'learning_rate': 4.018520324944319e-10, 'epoch': 1.0}
236
+ {'loss': 1.3008, 'grad_norm': 1.0155075719562054, 'learning_rate': 3.6066500682663264e-10, 'epoch': 1.0}
237
+ {'loss': 1.0982, 'grad_norm': 0.6882484767145587, 'learning_rate': 3.217043016756627e-10, 'epoch': 1.0}
238
+ {'loss': 1.1173, 'grad_norm': 1.2088299639494535, 'learning_rate': 2.8496991788529157e-10, 'epoch': 1.0}
239
+ {'loss': 0.9761, 'grad_norm': 2.247488672969709, 'learning_rate': 2.5046185629928885e-10, 'epoch': 1.0}
240
+ {'loss': 1.1151, 'grad_norm': 0.7724605019725375, 'learning_rate': 2.1818011767260615e-10, 'epoch': 1.0}
241
+ {'loss': 1.2292, 'grad_norm': 1.916832753280351, 'learning_rate': 1.881247027157862e-10, 'epoch': 1.0}
242
+ {'loss': 1.1573, 'grad_norm': 0.9861343770803095, 'learning_rate': 1.6029561211716727e-10, 'epoch': 1.0}
243
+ {'loss': 1.2659, 'grad_norm': 1.0597993957715799, 'learning_rate': 1.34692846487372e-10, 'epoch': 1.0}
244
+ {'loss': 1.1392, 'grad_norm': 1.2057802830555464, 'learning_rate': 1.113164063926142e-10, 'epoch': 1.0}
245
+ {'loss': 1.2013, 'grad_norm': 0.7118516881250079, 'learning_rate': 9.016629235469864e-11, 'epoch': 1.0}
246
+ {'loss': 1.2241, 'grad_norm': 0.9711977682864302, 'learning_rate': 7.124250485102124e-11, 'epoch': 1.0}
247
+ {'loss': 1.2042, 'grad_norm': 1.1853315913804563, 'learning_rate': 5.454504429236451e-11, 'epoch': 1.0}
248
+ {'loss': 1.1514, 'grad_norm': 0.7261232294024941, 'learning_rate': 4.0073911056204285e-11, 'epoch': 1.0}
249
+ {'loss': 1.5327, 'grad_norm': 3.9712089223972984, 'learning_rate': 2.7829105475607465e-11, 'epoch': 1.0}
250
+ {'loss': 0.9263, 'grad_norm': 0.910668734726166, 'learning_rate': 1.781062779482312e-11, 'epoch': 1.0}
251
+ {'loss': 1.3145, 'grad_norm': 0.9994139658018105, 'learning_rate': 1.0018478269202547e-11, 'epoch': 1.0}
252
+ {'loss': 1.2288, 'grad_norm': 0.8901729947063939, 'learning_rate': 4.452657054176968e-12, 'epoch': 1.0}
253
+ {'loss': 1.1766, 'grad_norm': 0.8098067441407663, 'learning_rate': 1.1131642718709146e-12, 'epoch': 1.0}
254
+ {'loss': 0.9875, 'grad_norm': 1.0981499096860188, 'learning_rate': 0.0, 'epoch': 1.0}
255
+ {'train_runtime': 2160.6123, 'train_samples_per_second': 321.488, 'train_steps_per_second': 10.047, 'train_loss': 0.011552139646460999, 'epoch': 1.0}
256
+ [2024-06-14 02:49:37,060] [INFO] [launch.py:351:main] Process 1400332 exits successfully.
257
+ [2024-06-14 02:49:38,061] [INFO] [launch.py:351:main] Process 1400331 exits successfully.
non_lora_trainables.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbe17bae02d0aa1207e503360d45078dc617beaed98eb2a241a59c3c9c4c3a46
3
+ size 19017904
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff