[2024-06-14 02:12:51,883] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)  [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.  [WARNING]  async_io: please install the libaio-dev package with apt  [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.  [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH  [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3  [WARNING]  using untested triton version (2.3.0), only 1.0.0 is known to be compatible [2024-06-14 02:12:52,556] [WARNING] [runner.py:202:fetch_hostfile] Unable to find hostfile, will proceed with training with local resources only. [2024-06-14 02:12:52,556] [INFO] [runner.py:568:main] cmd = /home/robert/miniconda3/envs/bunny/bin/python -u -m deepspeed.launcher.launch --world_info=eyJsb2NhbGhvc3QiOiBbMCwgMV19 --master_addr=127.0.0.1 --master_port=29500 --enable_each_rank_log=None bunny/train/train.py --lora_enable True --lora_r 128 --lora_alpha 256 --mm_projector_lr 2e-5 --deepspeed ./script/deepspeed/zero3.json --model_name_or_path microsoft/phi-2 --model_type phi-2 --version bunny --data_path ./data/finetune/bunny_695k.json --image_folder ./data/finetune/images --vision_tower google/siglip-so400m-patch14-384 --pretrain_mm_mlp_adapter ./checkpoints-pretrain/bunny-phi-2-pretrain/mm_projector.bin --mm_projector_type mlp2x_gelu --image_aspect_ratio pad --group_by_modality_length False --bf16 True --output_dir ./checkpoints-phi-2/bunny-lora-phi-2 --num_train_epochs 1 --per_device_train_batch_size 8 --per_device_eval_batch_size 4 --gradient_accumulation_steps 2 --evaluation_strategy no --save_strategy steps --save_steps 500 --save_total_limit 1 --learning_rate 2e-4 --weight_decay 0. --warmup_ratio 0.03 --lr_scheduler_type cosine --logging_steps 1 --tf32 True --model_max_length 2048 --gradient_checkpointing True --dataloader_num_workers 4 --lazy_preprocess True --report_to none [2024-06-14 02:12:53,999] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)  [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.  [WARNING]  async_io: please install the libaio-dev package with apt  [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.  [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH  [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3  [WARNING]  using untested triton version (2.3.0), only 1.0.0 is known to be compatible [2024-06-14 02:12:54,677] [INFO] [launch.py:146:main] WORLD INFO DICT: {'localhost': [0, 1]} [2024-06-14 02:12:54,677] [INFO] [launch.py:152:main] nnodes=1, num_local_procs=2, node_rank=0 [2024-06-14 02:12:54,677] [INFO] [launch.py:163:main] global_rank_mapping=defaultdict(, {'localhost': [0, 1]}) [2024-06-14 02:12:54,677] [INFO] [launch.py:164:main] dist_world_size=2 [2024-06-14 02:12:54,677] [INFO] [launch.py:168:main] Setting CUDA_VISIBLE_DEVICES=0,1 [2024-06-14 02:12:54,678] [INFO] [launch.py:256:main] process 1400331 spawned with command: ['/home/robert/miniconda3/envs/bunny/bin/python', '-u', 'bunny/train/train.py', '--local_rank=0', '--lora_enable', 'True', '--lora_r', '128', '--lora_alpha', '256', '--mm_projector_lr', '2e-5', '--deepspeed', './script/deepspeed/zero3.json', '--model_name_or_path', 'microsoft/phi-2', '--model_type', 'phi-2', '--version', 'bunny', '--data_path', './data/finetune/bunny_695k.json', '--image_folder', './data/finetune/images', '--vision_tower', 'google/siglip-so400m-patch14-384', '--pretrain_mm_mlp_adapter', './checkpoints-pretrain/bunny-phi-2-pretrain/mm_projector.bin', '--mm_projector_type', 'mlp2x_gelu', '--image_aspect_ratio', 'pad', '--group_by_modality_length', 'False', '--bf16', 'True', '--output_dir', './checkpoints-phi-2/bunny-lora-phi-2', '--num_train_epochs', '1', '--per_device_train_batch_size', '8', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '2', '--evaluation_strategy', 'no', '--save_strategy', 'steps', '--save_steps', '500', '--save_total_limit', '1', '--learning_rate', '2e-4', '--weight_decay', '0.', '--warmup_ratio', '0.03', '--lr_scheduler_type', 'cosine', '--logging_steps', '1', '--tf32', 'True', '--model_max_length', '2048', '--gradient_checkpointing', 'True', '--dataloader_num_workers', '4', '--lazy_preprocess', 'True', '--report_to', 'none'] [2024-06-14 02:12:54,678] [INFO] [launch.py:256:main] process 1400332 spawned with command: ['/home/robert/miniconda3/envs/bunny/bin/python', '-u', 'bunny/train/train.py', '--local_rank=1', '--lora_enable', 'True', '--lora_r', '128', '--lora_alpha', '256', '--mm_projector_lr', '2e-5', '--deepspeed', './script/deepspeed/zero3.json', '--model_name_or_path', 'microsoft/phi-2', '--model_type', 'phi-2', '--version', 'bunny', '--data_path', './data/finetune/bunny_695k.json', '--image_folder', './data/finetune/images', '--vision_tower', 'google/siglip-so400m-patch14-384', '--pretrain_mm_mlp_adapter', './checkpoints-pretrain/bunny-phi-2-pretrain/mm_projector.bin', '--mm_projector_type', 'mlp2x_gelu', '--image_aspect_ratio', 'pad', '--group_by_modality_length', 'False', '--bf16', 'True', '--output_dir', './checkpoints-phi-2/bunny-lora-phi-2', '--num_train_epochs', '1', '--per_device_train_batch_size', '8', '--per_device_eval_batch_size', '4', '--gradient_accumulation_steps', '2', '--evaluation_strategy', 'no', '--save_strategy', 'steps', '--save_steps', '500', '--save_total_limit', '1', '--learning_rate', '2e-4', '--weight_decay', '0.', '--warmup_ratio', '0.03', '--lr_scheduler_type', 'cosine', '--logging_steps', '1', '--tf32', 'True', '--model_max_length', '2048', '--gradient_checkpointing', 'True', '--dataloader_num_workers', '4', '--lazy_preprocess', 'True', '--report_to', 'none'] [2024-06-14 02:12:59,036] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect) [2024-06-14 02:12:59,043] [INFO] [real_accelerator.py:203:get_accelerator] Setting ds_accelerator to cuda (auto detect)  [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.  [WARNING]  async_io requires the dev libaio .so object and headers but these were not found.  [WARNING]  async_io: please install the libaio-dev package with apt  [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.  [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH  [WARNING]  async_io: please install the libaio-dev package with apt  [WARNING]  If libaio is already installed (perhaps from source), try setting the CFLAGS and LDFLAGS environment variables to where it can be found.  [WARNING]  Please specify the CUTLASS repo directory as environment variable $CUTLASS_PATH  [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3  [WARNING]  using untested triton version (2.3.0), only 1.0.0 is known to be compatible  [WARNING]  sparse_attn requires a torch version >= 1.5 and < 2.0 but detected 2.3  [WARNING]  using untested triton version (2.3.0), only 1.0.0 is known to be compatible [2024-06-14 02:12:59,215] [INFO] [comm.py:637:init_distributed] cdb=None [2024-06-14 02:12:59,226] [INFO] [comm.py:637:init_distributed] cdb=None [2024-06-14 02:12:59,226] [INFO] [comm.py:668:init_distributed] Initializing TorchBackend in DeepSpeed with backend nccl [2024-06-14 02:13:01,597] [INFO] [partition_parameters.py:345:__exit__] finished initializing model - num_params = 452, num_elems = 2.78B Adding LoRA adapters... [2024-06-14 02:13:06,587] [INFO] [partition_parameters.py:345:__exit__] finished initializing model - num_params = 900, num_elems = 3.21B Formatting inputs...Skip in lazy mode Formatting inputs...Skip in lazy mode Parameter Offload: Total persistent parameters: 1324480 in 540 params {'loss': 1.4425, 'grad_norm': 0.942700758245986, 'learning_rate': 4.723452001250683e-08, 'epoch': 0.99} {'loss': 1.0698, 'grad_norm': 5.386742649487362, 'learning_rate': 4.677708118508983e-08, 'epoch': 0.99} {'loss': 1.0348, 'grad_norm': 0.6414032462502491, 'learning_rate': 4.632186764480517e-08, 'epoch': 0.99} {'loss': 1.4007, 'grad_norm': 0.8399374153966813, 'learning_rate': 4.586887940176699e-08, 'epoch': 0.99} {'loss': 1.013, 'grad_norm': 1.1784298059039426, 'learning_rate': 4.54181164660894e-08, 'epoch': 0.99} {'loss': 1.4703, 'grad_norm': 0.9445735664284673, 'learning_rate': 4.496957884778663e-08, 'epoch': 0.99} {'loss': 1.357, 'grad_norm': 0.8032126350975317, 'learning_rate': 4.452326655685068e-08, 'epoch': 0.99} {'loss': 1.0204, 'grad_norm': 1.1730182937411677, 'learning_rate': 4.4079179603218055e-08, 'epoch': 0.99} {'loss': 1.3475, 'grad_norm': 1.2582671967211982, 'learning_rate': 4.363731799676973e-08, 'epoch': 0.99} {'loss': 1.0274, 'grad_norm': 1.7294591582235157, 'learning_rate': 4.319768174735339e-08, 'epoch': 0.99} {'loss': 1.1504, 'grad_norm': 1.0469817450846388, 'learning_rate': 4.2760270864738994e-08, 'epoch': 0.99} {'loss': 1.1542, 'grad_norm': 0.8339323652457116, 'learning_rate': 4.2325085358696504e-08, 'epoch': 0.99} {'loss': 1.4128, 'grad_norm': 0.9148113247697388, 'learning_rate': 4.189212523888486e-08, 'epoch': 0.99} {'loss': 1.0067, 'grad_norm': 1.072223405558702, 'learning_rate': 4.14613905149519e-08, 'epoch': 0.99} {'loss': 1.3823, 'grad_norm': 0.7933852853971807, 'learning_rate': 4.103288119648996e-08, 'epoch': 0.99} {'loss': 1.1281, 'grad_norm': 0.7261390721292842, 'learning_rate': 4.060659729303584e-08, 'epoch': 0.99} {'loss': 1.1811, 'grad_norm': 0.9003791199373986, 'learning_rate': 4.018253881409306e-08, 'epoch': 0.99} {'loss': 1.3176, 'grad_norm': 1.1947955753146302, 'learning_rate': 3.976070576908742e-08, 'epoch': 0.99} {'loss': 1.2388, 'grad_norm': 6.846984030349887, 'learning_rate': 3.934109816741138e-08, 'epoch': 0.99} {'loss': 1.2566, 'grad_norm': 2.6987845022894623, 'learning_rate': 3.8923716018401943e-08, 'epoch': 0.99} {'loss': 0.9042, 'grad_norm': 0.7541139281044368, 'learning_rate': 3.850855933137387e-08, 'epoch': 0.99} {'loss': 1.243, 'grad_norm': 3.311043853373493, 'learning_rate': 3.8095628115553114e-08, 'epoch': 0.99} {'loss': 1.147, 'grad_norm': 0.9586566637745106, 'learning_rate': 3.7684922380132324e-08, 'epoch': 0.99} {'loss': 1.0982, 'grad_norm': 0.9359946330825151, 'learning_rate': 3.727644213424863e-08, 'epoch': 0.99} {'loss': 1.2446, 'grad_norm': 0.9731633495925633, 'learning_rate': 3.687018738701697e-08, 'epoch': 0.99} {'loss': 1.4469, 'grad_norm': 1.4342280541565777, 'learning_rate': 3.646615814747456e-08, 'epoch': 0.99} {'loss': 1.2553, 'grad_norm': 1.3033387849211402, 'learning_rate': 3.6064354424603096e-08, 'epoch': 0.99} {'loss': 1.5003, 'grad_norm': 0.7709586580426135, 'learning_rate': 3.566477622736208e-08, 'epoch': 0.99} {'loss': 1.0965, 'grad_norm': 1.0000894519468093, 'learning_rate': 3.526742356463331e-08, 'epoch': 0.99} {'loss': 1.4456, 'grad_norm': 1.1231825108623885, 'learning_rate': 3.487229644528744e-08, 'epoch': 0.99} {'loss': 1.2185, 'grad_norm': 1.392070634372661, 'learning_rate': 3.447939487809526e-08, 'epoch': 0.99} {'loss': 1.0054, 'grad_norm': 0.9414901630248458, 'learning_rate': 3.408871887182752e-08, 'epoch': 0.99} {'loss': 1.3494, 'grad_norm': 0.784432037613797, 'learning_rate': 3.370026843515506e-08, 'epoch': 0.99} {'loss': 1.4281, 'grad_norm': 1.1215894921327614, 'learning_rate': 3.3314043576748724e-08, 'epoch': 0.99} {'loss': 1.481, 'grad_norm': 0.7832511915640359, 'learning_rate': 3.293004430520163e-08, 'epoch': 0.99} {'loss': 1.0621, 'grad_norm': 0.8330566484962368, 'learning_rate': 3.2548270629051415e-08, 'epoch': 0.99} {'loss': 1.1758, 'grad_norm': 1.0721497039114856, 'learning_rate': 3.216872255681347e-08, 'epoch': 0.99} {'loss': 1.5477, 'grad_norm': 0.7260520718611978, 'learning_rate': 3.1791400096925495e-08, 'epoch': 0.99} {'loss': 1.5049, 'grad_norm': 1.1098146309429233, 'learning_rate': 3.141630325780298e-08, 'epoch': 0.99} {'loss': 1.0742, 'grad_norm': 1.8347651432396874, 'learning_rate': 3.10434320477726e-08, 'epoch': 0.99} {'loss': 1.1936, 'grad_norm': 2.2776015845200916, 'learning_rate': 3.067278647516103e-08, 'epoch': 0.99} {'loss': 1.2198, 'grad_norm': 1.0355190821448266, 'learning_rate': 3.030436654820612e-08, 'epoch': 0.99} {'loss': 1.1147, 'grad_norm': 2.4355829952567385, 'learning_rate': 2.993817227511242e-08, 'epoch': 0.99} {'loss': 1.3694, 'grad_norm': 0.984979819700457, 'learning_rate': 2.9574203664040068e-08, 'epoch': 0.99} {'loss': 1.4798, 'grad_norm': 1.60805779871656, 'learning_rate': 2.921246072307149e-08, 'epoch': 0.99} {'loss': 1.2715, 'grad_norm': 1.3650514569339907, 'learning_rate': 2.8852943460289107e-08, 'epoch': 0.99} {'loss': 1.3787, 'grad_norm': 1.2625718262332608, 'learning_rate': 2.8495651883675424e-08, 'epoch': 0.99} {'loss': 1.3049, 'grad_norm': 0.8021584725122108, 'learning_rate': 2.8140586001190737e-08, 'epoch': 0.99} {'loss': 1.1923, 'grad_norm': 0.8168092830830008, 'learning_rate': 2.7787745820739842e-08, 'epoch': 0.99} {'loss': 1.1541, 'grad_norm': 0.8427335930115224, 'learning_rate': 2.743713135018311e-08, 'epoch': 0.99} {'loss': 1.1531, 'grad_norm': 1.2501986070685778, 'learning_rate': 2.708874259732541e-08, 'epoch': 0.99} {'loss': 1.3751, 'grad_norm': 0.8944408353826961, 'learning_rate': 2.6742579569916104e-08, 'epoch': 0.99} {'loss': 1.3265, 'grad_norm': 0.8662694939770277, 'learning_rate': 2.6398642275660135e-08, 'epoch': 0.99} {'loss': 1.0567, 'grad_norm': 1.0111099240739703, 'learning_rate': 2.6056930722229145e-08, 'epoch': 0.99} {'loss': 1.0349, 'grad_norm': 0.9690077754479983, 'learning_rate': 2.571744491721706e-08, 'epoch': 0.99} {'loss': 1.4695, 'grad_norm': 0.6430214364296446, 'learning_rate': 2.53801848681956e-08, 'epoch': 0.99} {'loss': 1.4982, 'grad_norm': 0.7420680068160221, 'learning_rate': 2.5045150582658773e-08, 'epoch': 0.99} {'loss': 0.8213, 'grad_norm': 3.67220224157274, 'learning_rate': 2.4712342068067273e-08, 'epoch': 0.99} {'loss': 1.2143, 'grad_norm': 2.50986289612842, 'learning_rate': 2.4381759331837395e-08, 'epoch': 0.99} {'loss': 1.2333, 'grad_norm': 0.8257838615002613, 'learning_rate': 2.4053402381318814e-08, 'epoch': 0.99} {'loss': 1.1157, 'grad_norm': 1.205163641885224, 'learning_rate': 2.3727271223839e-08, 'epoch': 0.99} {'loss': 0.9462, 'grad_norm': 0.8336985402702446, 'learning_rate': 2.3403365866647707e-08, 'epoch': 0.99} {'loss': 1.3943, 'grad_norm': 1.4013151797733856, 'learning_rate': 2.3081686316961393e-08, 'epoch': 0.99} {'loss': 1.3747, 'grad_norm': 0.7985012764218158, 'learning_rate': 2.276223258192989e-08, 'epoch': 0.99} {'loss': 0.9557, 'grad_norm': 1.1690954634900848, 'learning_rate': 2.2445004668680824e-08, 'epoch': 0.99} {'loss': 0.9685, 'grad_norm': 0.9623389466769615, 'learning_rate': 2.213000258426412e-08, 'epoch': 0.99} {'loss': 0.9524, 'grad_norm': 2.1843226135301275, 'learning_rate': 2.1817226335696384e-08, 'epoch': 0.99} {'loss': 1.0139, 'grad_norm': 0.8918643218214802, 'learning_rate': 2.1506675929938713e-08, 'epoch': 0.99} {'loss': 1.5443, 'grad_norm': 0.789604746189584, 'learning_rate': 2.11983513739189e-08, 'epoch': 0.99} {'loss': 1.1413, 'grad_norm': 1.2709132143502189, 'learning_rate': 2.089225267447592e-08, 'epoch': 0.99} {'loss': 1.1142, 'grad_norm': 0.9530093706340396, 'learning_rate': 2.0588379838448745e-08, 'epoch': 0.99} {'loss': 1.4164, 'grad_norm': 0.8921788520759392, 'learning_rate': 2.0286732872598634e-08, 'epoch': 0.99} {'loss': 1.1639, 'grad_norm': 2.4443203418969848, 'learning_rate': 1.9987311783631335e-08, 'epoch': 0.99} {'loss': 1.3764, 'grad_norm': 1.1668353021113063, 'learning_rate': 1.9690116578219286e-08, 'epoch': 0.99} {'loss': 1.2973, 'grad_norm': 1.010623947500593, 'learning_rate': 1.9395147262968317e-08, 'epoch': 0.99} {'loss': 1.2691, 'grad_norm': 0.8898451427839096, 'learning_rate': 1.9102403844462047e-08, 'epoch': 0.99} {'loss': 1.4245, 'grad_norm': 0.7914659980565069, 'learning_rate': 1.8811886329217487e-08, 'epoch': 0.99} {'loss': 1.362, 'grad_norm': 0.7832894858322704, 'learning_rate': 1.8523594723685032e-08, 'epoch': 0.99} {'loss': 1.3057, 'grad_norm': 0.8955949346465102, 'learning_rate': 1.8237529034292876e-08, 'epoch': 0.99} {'loss': 1.0109, 'grad_norm': 0.6765891435245239, 'learning_rate': 1.7953689267413698e-08, 'epoch': 0.99} {'loss': 1.2171, 'grad_norm': 0.970128827793069, 'learning_rate': 1.7672075429364665e-08, 'epoch': 0.99} {'loss': 1.161, 'grad_norm': 1.2721599430804214, 'learning_rate': 1.7392687526407437e-08, 'epoch': 0.99} {'loss': 1.2052, 'grad_norm': 1.1817903579639597, 'learning_rate': 1.711552556477036e-08, 'epoch': 0.99} {'loss': 1.065, 'grad_norm': 1.059992984071674, 'learning_rate': 1.6840589550626284e-08, 'epoch': 0.99} {'loss': 1.4083, 'grad_norm': 0.8051901491068411, 'learning_rate': 1.656787949009253e-08, 'epoch': 0.99} {'loss': 1.3522, 'grad_norm': 0.9453133488951609, 'learning_rate': 1.629739538924202e-08, 'epoch': 0.99} {'loss': 1.3357, 'grad_norm': 1.5231809399877834, 'learning_rate': 1.602913725408106e-08, 'epoch': 0.99} {'loss': 1.191, 'grad_norm': 0.7759721620339927, 'learning_rate': 1.576310509060486e-08, 'epoch': 0.99} {'loss': 1.2079, 'grad_norm': 0.9574306333903998, 'learning_rate': 1.5499298904730897e-08, 'epoch': 0.99} {'loss': 1.3609, 'grad_norm': 0.8984157351262388, 'learning_rate': 1.5237718702321157e-08, 'epoch': 0.99} {'loss': 1.3661, 'grad_norm': 1.2733647977353184, 'learning_rate': 1.4978364489215413e-08, 'epoch': 0.99} {'loss': 1.2004, 'grad_norm': 1.5219904926183827, 'learning_rate': 1.472123627117572e-08, 'epoch': 0.99} {'loss': 1.3272, 'grad_norm': 0.9349084111819203, 'learning_rate': 1.446633405393083e-08, 'epoch': 0.99} {'loss': 1.0451, 'grad_norm': 2.5778124045810222, 'learning_rate': 1.421365784314288e-08, 'epoch': 0.99} {'loss': 1.0895, 'grad_norm': 0.9365064782027099, 'learning_rate': 1.3963207644462906e-08, 'epoch': 0.99} {'loss': 1.1102, 'grad_norm': 0.8330735209837793, 'learning_rate': 1.3714983463442022e-08, 'epoch': 0.99} {'loss': 1.2836, 'grad_norm': 0.9561616455105378, 'learning_rate': 1.346898530562024e-08, 'epoch': 0.99} [2024-06-14 02:30:38,728] [WARNING] [stage3.py:2069:step] 1 pytorch allocator cache flushes since last step. this happens when there is high memory pressure and is detrimental to performance. if this is happening frequently consider adjusting settings to reduce memory consumption. If you are unable to make the cache flushes go away consider adding get_accelerator().empty_cache() calls in your training loop to ensure that all ranks flush their caches at the same time {'loss': 1.2363, 'grad_norm': 0.7071857362610257, 'learning_rate': 1.3225213176482065e-08, 'epoch': 0.99} {'loss': 1.2631, 'grad_norm': 0.8004012362110456, 'learning_rate': 1.298366708143428e-08, 'epoch': 1.0} {'loss': 1.5518, 'grad_norm': 0.8141940190741423, 'learning_rate': 1.2744347025861469e-08, 'epoch': 1.0} {'loss': 1.3571, 'grad_norm': 1.0142219264331416, 'learning_rate': 1.2507253015103804e-08, 'epoch': 1.0} {'loss': 1.1516, 'grad_norm': 0.9337790912361478, 'learning_rate': 1.227238505442374e-08, 'epoch': 1.0} {'loss': 1.5332, 'grad_norm': 1.0019159278288796, 'learning_rate': 1.203974314905043e-08, 'epoch': 1.0} {'loss': 0.9523, 'grad_norm': 1.3255552639470847, 'learning_rate': 1.1809327304179717e-08, 'epoch': 1.0} {'loss': 1.0178, 'grad_norm': 2.3569328810589836, 'learning_rate': 1.158113752492973e-08, 'epoch': 1.0} {'loss': 1.0026, 'grad_norm': 0.9469794474905348, 'learning_rate': 1.1355173816385289e-08, 'epoch': 1.0} {'loss': 1.3561, 'grad_norm': 1.0444323780434388, 'learning_rate': 1.1131436183564603e-08, 'epoch': 1.0} {'loss': 1.0371, 'grad_norm': 0.8986112639676435, 'learning_rate': 1.0909924631463675e-08, 'epoch': 1.0} {'loss': 1.2115, 'grad_norm': 2.373261525594255, 'learning_rate': 1.0690639165011895e-08, 'epoch': 1.0} {'loss': 1.3309, 'grad_norm': 1.122171472399203, 'learning_rate': 1.0473579789083143e-08, 'epoch': 1.0} {'loss': 1.1064, 'grad_norm': 1.8809967982797045, 'learning_rate': 1.0258746508517991e-08, 'epoch': 1.0} {'loss': 1.3553, 'grad_norm': 0.6738030569641423, 'learning_rate': 1.00461393281015e-08, 'epoch': 1.0} {'loss': 1.3224, 'grad_norm': 1.2808290035083636, 'learning_rate': 9.835758252552118e-09, 'epoch': 1.0} {'loss': 1.1095, 'grad_norm': 1.053570231478655, 'learning_rate': 9.627603286566088e-09, 'epoch': 1.0} {'loss': 1.3688, 'grad_norm': 1.163503084500989, 'learning_rate': 9.421674434773042e-09, 'epoch': 1.0} {'loss': 1.1505, 'grad_norm': 2.5903259835818186, 'learning_rate': 9.2179717017693e-09, 'epoch': 1.0} {'loss': 1.011, 'grad_norm': 1.3895324590981457, 'learning_rate': 9.016495092073474e-09, 'epoch': 1.0} {'loss': 1.1866, 'grad_norm': 1.8823726980006361, 'learning_rate': 8.817244610170861e-09, 'epoch': 1.0} {'loss': 1.299, 'grad_norm': 0.8503392238673622, 'learning_rate': 8.620220260513456e-09, 'epoch': 1.0} {'loss': 1.3522, 'grad_norm': 0.8624416934110696, 'learning_rate': 8.42542204747554e-09, 'epoch': 1.0} {'loss': 1.1821, 'grad_norm': 1.0867326324653512, 'learning_rate': 8.232849975398082e-09, 'epoch': 1.0} {'loss': 1.4199, 'grad_norm': 0.8147434696121018, 'learning_rate': 8.042504048555444e-09, 'epoch': 1.0} {'loss': 1.3494, 'grad_norm': 0.8654331092126935, 'learning_rate': 7.85438427121088e-09, 'epoch': 1.0} {'loss': 1.1523, 'grad_norm': 1.6205454650407503, 'learning_rate': 7.668490647538828e-09, 'epoch': 1.0} {'loss': 1.2058, 'grad_norm': 0.9633457313784664, 'learning_rate': 7.48482318166932e-09, 'epoch': 1.0} {'loss': 1.0053, 'grad_norm': 0.805306176189691, 'learning_rate': 7.303381877699078e-09, 'epoch': 1.0} {'loss': 1.1672, 'grad_norm': 2.0945837494826427, 'learning_rate': 7.124166739680416e-09, 'epoch': 1.0} {'loss': 1.0993, 'grad_norm': 1.1790408885617623, 'learning_rate': 6.94717777157683e-09, 'epoch': 1.0} {'loss': 1.3596, 'grad_norm': 3.2801472917143237, 'learning_rate': 6.772414977351816e-09, 'epoch': 1.0} {'loss': 1.1421, 'grad_norm': 4.62041686026284, 'learning_rate': 6.599878360891154e-09, 'epoch': 1.0} {'loss': 1.0906, 'grad_norm': 1.0338053298478405, 'learning_rate': 6.429567926025115e-09, 'epoch': 1.0} {'loss': 1.2614, 'grad_norm': 0.9214427909361785, 'learning_rate': 6.2614836765506614e-09, 'epoch': 1.0} {'loss': 1.2062, 'grad_norm': 0.9468374577747518, 'learning_rate': 6.095625616220346e-09, 'epoch': 1.0} {'loss': 1.0961, 'grad_norm': 1.3576864307028402, 'learning_rate': 5.931993748709008e-09, 'epoch': 1.0} {'loss': 1.263, 'grad_norm': 1.2507886070479686, 'learning_rate': 5.770588077669281e-09, 'epoch': 1.0} {'loss': 1.2194, 'grad_norm': 0.6878309986692126, 'learning_rate': 5.611408606698287e-09, 'epoch': 1.0} {'loss': 1.436, 'grad_norm': 0.8163139930922514, 'learning_rate': 5.4544553393376386e-09, 'epoch': 1.0} {'loss': 1.2167, 'grad_norm': 0.7109340908969963, 'learning_rate': 5.2997282790734345e-09, 'epoch': 1.0} {'loss': 0.9125, 'grad_norm': 1.6286097660220318, 'learning_rate': 5.147227429369572e-09, 'epoch': 1.0} {'loss': 0.8081, 'grad_norm': 2.8495076490148104, 'learning_rate': 4.996952793590026e-09, 'epoch': 1.0} {'loss': 1.0316, 'grad_norm': 1.8684533521782878, 'learning_rate': 4.848904375109875e-09, 'epoch': 1.0} {'loss': 0.7153, 'grad_norm': 0.9122003848331615, 'learning_rate': 4.703082177215378e-09, 'epoch': 1.0} {'loss': 1.1442, 'grad_norm': 0.8297542801866371, 'learning_rate': 4.559486203148388e-09, 'epoch': 1.0} {'loss': 1.066, 'grad_norm': 1.099243554454167, 'learning_rate': 4.418116456106347e-09, 'epoch': 1.0} {'loss': 1.5408, 'grad_norm': 0.7118212662014688, 'learning_rate': 4.278972939242287e-09, 'epoch': 1.0} {'loss': 1.3404, 'grad_norm': 1.4362812302876498, 'learning_rate': 4.142055655653732e-09, 'epoch': 1.0} {'loss': 1.0888, 'grad_norm': 1.3629430661994493, 'learning_rate': 4.0073646083715884e-09, 'epoch': 1.0} {'loss': 1.112, 'grad_norm': 2.2100855393400276, 'learning_rate': 3.8748998004267676e-09, 'epoch': 1.0} {'loss': 1.3644, 'grad_norm': 0.7158178246776601, 'learning_rate': 3.744661234739155e-09, 'epoch': 1.0} {'loss': 1.3107, 'grad_norm': 0.942036119220107, 'learning_rate': 3.6166489142286377e-09, 'epoch': 1.0} {'loss': 1.2474, 'grad_norm': 1.5908115889363665, 'learning_rate': 3.4908628417373857e-09, 'epoch': 1.0} {'loss': 0.9509, 'grad_norm': 0.8861920310940888, 'learning_rate': 3.3673030200520594e-09, 'epoch': 1.0} {'loss': 1.1007, 'grad_norm': 1.1194164105994997, 'learning_rate': 3.2459694519482162e-09, 'epoch': 1.0} {'loss': 1.079, 'grad_norm': 1.7755772555508103, 'learning_rate': 3.1268621401125964e-09, 'epoch': 1.0} {'loss': 1.0855, 'grad_norm': 0.8351181880154243, 'learning_rate': 3.009981087198632e-09, 'epoch': 1.0} {'loss': 1.2608, 'grad_norm': 0.8626554454964646, 'learning_rate': 2.895326295804246e-09, 'epoch': 1.0} {'loss': 1.0801, 'grad_norm': 0.9514880970684986, 'learning_rate': 2.7828977684940525e-09, 'epoch': 1.0} {'loss': 1.1484, 'grad_norm': 0.7842554312013447, 'learning_rate': 2.672695507754952e-09, 'epoch': 1.0} {'loss': 1.0309, 'grad_norm': 0.9639220640203608, 'learning_rate': 2.564719516062741e-09, 'epoch': 1.0} {'loss': 1.0896, 'grad_norm': 5.893335510855347, 'learning_rate': 2.4589697958044e-09, 'epoch': 1.0} {'loss': 1.0671, 'grad_norm': 1.237578097349438, 'learning_rate': 2.355446349333601e-09, 'epoch': 1.0} {'loss': 1.2633, 'grad_norm': 3.309447811014566, 'learning_rate': 2.254149178959608e-09, 'epoch': 1.0} {'loss': 1.5265, 'grad_norm': 1.1766115766294134, 'learning_rate': 2.155078286936174e-09, 'epoch': 1.0} {'loss': 1.3161, 'grad_norm': 1.261377135630768, 'learning_rate': 2.058233675472643e-09, 'epoch': 1.0} {'loss': 0.9197, 'grad_norm': 2.9265974640791073, 'learning_rate': 1.963615346733949e-09, 'epoch': 1.0} {'loss': 1.2767, 'grad_norm': 1.124163723768451, 'learning_rate': 1.87122330279621e-09, 'epoch': 1.0} {'loss': 0.9884, 'grad_norm': 0.8206219469866542, 'learning_rate': 1.781057545746645e-09, 'epoch': 1.0} {'loss': 1.4566, 'grad_norm': 0.6893408698138835, 'learning_rate': 1.6931180775836553e-09, 'epoch': 1.0} {'loss': 1.4497, 'grad_norm': 0.7513770563975293, 'learning_rate': 1.6074049002612335e-09, 'epoch': 1.0} {'loss': 1.4434, 'grad_norm': 1.0794222136615717, 'learning_rate': 1.5239180156889633e-09, 'epoch': 1.0} {'loss': 1.3901, 'grad_norm': 1.2735045093264037, 'learning_rate': 1.442657425720917e-09, 'epoch': 1.0} {'loss': 1.0627, 'grad_norm': 1.083357360371921, 'learning_rate': 1.3636231321778602e-09, 'epoch': 1.0} {'loss': 1.1931, 'grad_norm': 1.5561575605915832, 'learning_rate': 1.2868151368028435e-09, 'epoch': 1.0} {'loss': 1.0351, 'grad_norm': 0.8498417639523637, 'learning_rate': 1.2122334413278146e-09, 'epoch': 1.0} {'loss': 1.2696, 'grad_norm': 1.0869334696996453, 'learning_rate': 1.1398780473959037e-09, 'epoch': 1.0} {'loss': 1.1768, 'grad_norm': 0.9256138759220954, 'learning_rate': 1.0697489566280362e-09, 'epoch': 1.0} {'loss': 1.3349, 'grad_norm': 1.1068591098386078, 'learning_rate': 1.001846170567422e-09, 'epoch': 1.0} {'loss': 0.9784, 'grad_norm': 0.7613604227444113, 'learning_rate': 9.361696907572714e-10, 'epoch': 1.0} {'loss': 1.1655, 'grad_norm': 1.3884342450751241, 'learning_rate': 8.727195186297721e-10, 'epoch': 1.0} {'loss': 1.3665, 'grad_norm': 0.7689778929243138, 'learning_rate': 8.114956556171116e-10, 'epoch': 1.0} {'loss': 1.1323, 'grad_norm': 1.259485983943609, 'learning_rate': 7.524981030626598e-10, 'epoch': 1.0} {'loss': 1.1608, 'grad_norm': 0.7771101060171148, 'learning_rate': 6.957268622986846e-10, 'epoch': 1.0} {'loss': 1.1237, 'grad_norm': 1.288212435458082, 'learning_rate': 6.411819345908399e-10, 'epoch': 1.0} {'loss': 1.2058, 'grad_norm': 1.0930381944300036, 'learning_rate': 5.888633211381667e-10, 'epoch': 1.0} {'loss': 1.19, 'grad_norm': 1.1138745850551712, 'learning_rate': 5.387710231063991e-10, 'epoch': 1.0} {'loss': 1.2528, 'grad_norm': 0.9071826069395514, 'learning_rate': 4.909050416168626e-10, 'epoch': 1.0} {'loss': 1.18, 'grad_norm': 2.0569238529909164, 'learning_rate': 4.4526537774647324e-10, 'epoch': 1.0} {'loss': 1.2705, 'grad_norm': 0.7839265892155309, 'learning_rate': 4.018520324944319e-10, 'epoch': 1.0} {'loss': 1.3008, 'grad_norm': 1.0155075719562054, 'learning_rate': 3.6066500682663264e-10, 'epoch': 1.0} {'loss': 1.0982, 'grad_norm': 0.6882484767145587, 'learning_rate': 3.217043016756627e-10, 'epoch': 1.0} {'loss': 1.1173, 'grad_norm': 1.2088299639494535, 'learning_rate': 2.8496991788529157e-10, 'epoch': 1.0} {'loss': 0.9761, 'grad_norm': 2.247488672969709, 'learning_rate': 2.5046185629928885e-10, 'epoch': 1.0} {'loss': 1.1151, 'grad_norm': 0.7724605019725375, 'learning_rate': 2.1818011767260615e-10, 'epoch': 1.0} {'loss': 1.2292, 'grad_norm': 1.916832753280351, 'learning_rate': 1.881247027157862e-10, 'epoch': 1.0} {'loss': 1.1573, 'grad_norm': 0.9861343770803095, 'learning_rate': 1.6029561211716727e-10, 'epoch': 1.0} {'loss': 1.2659, 'grad_norm': 1.0597993957715799, 'learning_rate': 1.34692846487372e-10, 'epoch': 1.0} {'loss': 1.1392, 'grad_norm': 1.2057802830555464, 'learning_rate': 1.113164063926142e-10, 'epoch': 1.0} {'loss': 1.2013, 'grad_norm': 0.7118516881250079, 'learning_rate': 9.016629235469864e-11, 'epoch': 1.0} {'loss': 1.2241, 'grad_norm': 0.9711977682864302, 'learning_rate': 7.124250485102124e-11, 'epoch': 1.0} {'loss': 1.2042, 'grad_norm': 1.1853315913804563, 'learning_rate': 5.454504429236451e-11, 'epoch': 1.0} {'loss': 1.1514, 'grad_norm': 0.7261232294024941, 'learning_rate': 4.0073911056204285e-11, 'epoch': 1.0} {'loss': 1.5327, 'grad_norm': 3.9712089223972984, 'learning_rate': 2.7829105475607465e-11, 'epoch': 1.0} {'loss': 0.9263, 'grad_norm': 0.910668734726166, 'learning_rate': 1.781062779482312e-11, 'epoch': 1.0} {'loss': 1.3145, 'grad_norm': 0.9994139658018105, 'learning_rate': 1.0018478269202547e-11, 'epoch': 1.0} {'loss': 1.2288, 'grad_norm': 0.8901729947063939, 'learning_rate': 4.452657054176968e-12, 'epoch': 1.0} {'loss': 1.1766, 'grad_norm': 0.8098067441407663, 'learning_rate': 1.1131642718709146e-12, 'epoch': 1.0} {'loss': 0.9875, 'grad_norm': 1.0981499096860188, 'learning_rate': 0.0, 'epoch': 1.0} {'train_runtime': 2160.6123, 'train_samples_per_second': 321.488, 'train_steps_per_second': 10.047, 'train_loss': 0.011552139646460999, 'epoch': 1.0} [2024-06-14 02:49:37,060] [INFO] [launch.py:351:main] Process 1400332 exits successfully. [2024-06-14 02:49:38,061] [INFO] [launch.py:351:main] Process 1400331 exits successfully.