--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_6_1 metrics: - wer model-index: - name: Whisper Small Frisian 1h results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 6.1 type: mozilla-foundation/common_voice_6_1 args: 'config: frisian, split: test' metrics: - name: Wer type: wer value: 35.273569773658885 --- # Whisper Small Frisian 1h This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 6.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.7292 - Wer: 35.2736 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 600 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.6776 | 1.1236 | 100 | 0.8509 | 44.5482 | | 0.107 | 2.2472 | 200 | 0.7355 | 39.2800 | | 0.0261 | 3.3708 | 300 | 0.7068 | 36.7742 | | 0.0108 | 4.4944 | 400 | 0.7252 | 35.9080 | | 0.0033 | 5.6180 | 500 | 0.7246 | 35.1239 | | 0.002 | 6.7416 | 600 | 0.7292 | 35.2736 | ### Framework versions - Transformers 4.40.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1