--- language: en license: mit library_name: diffusers tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image datasets: yuntian-deng/im2latex-100k metrics: [] --- # latex2im_ss_finetunegptneo ## Model description Details of this model can be found in [our paper on markup-to-image generation](https://arxiv.org/pdf/2210.05147.pdf). Our code is built on top of HuggingFace [diffusers](https://github.com/huggingface/diffusers) and [transformers](https://github.com/huggingface/transformers). ## Online Demo: [https://huggingface.co/spaces/yuntian-deng/latex2im](https://huggingface.co/spaces/yuntian-deng/latex2im). ## Model Details - **Developed by:** Yuntian Deng, Noriyuki Kojima, Alexander M. Rush - **Model type:** Diffusion-based text-to-image generation model - **Language(s):** English - **License:** [MIT](https://github.com/da03/markup2im/blob/main/LICENSE). - **Model Description:** This is a model that can be used to generate math formula images based on LaTeX prompts. - **Resources for more information:** [GitHub Repository](https://github.com/da03/markup2im), [Paper](https://arxiv.org/abs/2210.05147). - **Cite as:** @inproceedings{ deng2023markuptoimage, title={Markup-to-Image Diffusion Models with Scheduled Sampling}, author={Yuntian Deng and Noriyuki Kojima and Alexander M Rush}, booktitle={The Eleventh International Conference on Learning Representations }, year={2023}, url={https://openreview.net/forum?id=81VJDmOE2ol} }