File size: 1,634 Bytes
cac634a
 
 
 
 
 
 
2660234
cac634a
29b6604
 
1a940af
29b6604
2660234
 
 
5d9a048
2660234
1a940af
29b6604
cac634a
1a940af
cac634a
2660234
1a940af
2660234
 
 
1a940af
2660234
29b6604
1a940af
29b6604
1a940af
29b6604
 
 
1a940af
29b6604
1a940af
29b6604
1a940af
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
library_name: transformers
license: mit
datasets:
- hendrydong/preference_700K
base_model:
- microsoft/Phi-3-mini-4k-instruct
pipeline_tag: text-classification
---


# phi-instruct-segment Model Card

- **Paper:** [Segmenting Text and Learning Their Rewards for Improved RLHF in Language Model
](https://arxiv.org/abs/2501.02790)

- **Model:** [yyqoni/Phi-3-mini-4k-instruct-segment-rm-700k](https://huggingface.co/yyqoni/Phi-3-mini-4k-instruct-segment-rm-700k)

## Method


The segment reward model assigns rewards to semantically meaningful text segments, segmented dynamically with an entropy-based threshold. It is trained on binary preference labels from human feedback, optimizing a Bradley-Terry loss function that aggregates segment rewards using the average function.

## Architecture
<div align=center>

![image/png](https://cdn-uploads.huggingface.co/production/uploads/605e8dfd5abeb13e714c4c18/xeGwtrpnx2bWFg5ZOHA7R.png)

</div>


## Training

The phi-instruct-segment model is fine-tuned from **microsoft/Phi-3-mini-4k-instruct** on the **hendrydong/preference_700K dataset**.



## Citation

If you find this model or our research useful, please consider citing our paper:

```bibtex
@misc{yin2025segmentingtextlearningrewards,
      title={Segmenting Text and Learning Their Rewards for Improved RLHF in Language Model}, 
      author={Yueqin Yin and Shentao Yang and Yujia Xie and Ziyi Yang and Yuting Sun and Hany Awadalla and Weizhu Chen and Mingyuan Zhou},
      year={2025},
      eprint={2501.02790},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2501.02790},
}
```