yyqoni commited on
Commit
2ef3386
·
verified ·
1 Parent(s): c5959e6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +69 -162
README.md CHANGED
@@ -1,199 +1,106 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
 
 
133
 
 
134
 
135
- ## Model Examination [optional]
136
 
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
 
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
- ### Compute Infrastructure
 
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
182
 
183
- ## Glossary [optional]
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
 
 
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
 
 
 
 
 
190
 
191
- [More Information Needed]
 
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: transformers
3
+ license: mit
4
+ datasets:
5
+ - argilla/ultrafeedback-binarized-preferences-cleaned
6
+ base_model:
7
+ - microsoft/Phi-3-mini-4k-instruct
8
+ pipeline_tag: text-generation
9
  ---
10
 
11
+ # phi-instruct-segment-ppo Model Card
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
+ The *phi-instruct-segment-ppo* model introduces a segment-level reward model to improve reinforcement learning with human feedback (RLHF) in language models. This work builds upon the methods in our paper *[Segmenting Text and Learning Their Rewards for Improved RLHF in Language Model](https://arxiv.org/abs/2501.02790)*.
14
 
15
+ ---
16
 
17
+ ## Method Illustration
18
 
19
+ Below is an illustration of the segment-based reward modeling method, showing how entropy thresholds are used for segmentation, integrating both the reward model and PPO training:
20
 
21
+ ## Architecture
22
+ <div align=center>
23
 
24
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/605e8dfd5abeb13e714c4c18/xeGwtrpnx2bWFg5ZOHA7R.png)
25
 
26
+ </div>
27
 
 
28
 
 
 
 
 
 
29
 
30
+ ---
31
 
32
+ ## Model Overview
33
 
34
+ This approach redefines the granularity of RLHF training by:
35
 
36
+ - Assigning rewards to semantically complete text segments, defined based on entropy thresholds.
37
+ - Introducing techniques to stabilize RLHF training under dense, segment-level rewards.
38
 
39
+ Model checkpoints are available on [HuggingFace](https://huggingface.co/collections/yyqoni/denserewardrlhf-ppo-677d39b5521f1e366c196f14).
40
 
41
+ ---
42
 
43
+ ## Training Data
44
 
45
+ We utilize the following datasets in our training pipeline:
46
 
47
+ - **Preference-700K Dataset**: A diverse collection of open-source preference datasets, including HH-RLHF, Stanford Human Preferences Dataset (SHP), and HelpSteer.
48
+ - **Ultrafeedback Dataset**: Used for sampling prompts during the PPO training routine.
49
 
50
+ ---
51
 
52
+ ## Base Model
53
 
54
+ The *phi-instruct-segment-ppo* model is fine-tuned from **microsoft/Phi-3-mini-4k-instruct**.
55
 
56
+ ---
57
 
58
+ ## Usage
59
 
60
+ You can use this model directly with Hugging Face's Transformers library:
61
 
62
+ ```python
63
+ from transformers import AutoModelForCausalLM, AutoTokenizer
64
 
65
+ # Load model and tokenizer
66
+ model_name = "yyqoni/Phi-3-mini-4k-segment-ppo-60k"
67
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True)
68
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
69
 
70
+ # Input text
71
+ input_text = "What are the benefits of using reinforcement learning in AI?"
72
 
73
+ # Apply chat template formatting with generation prompt
74
+ formatted_input = tokenizer.apply_chat_template(
75
+ [{"role": "user", "content": input_text}],
76
+ tokenize=False,
77
+ add_generation_prompt=True
78
+ )
79
 
80
+ # Tokenize the formatted input
81
+ inputs = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
82
 
83
+ # Generate response
84
+ outputs = model.generate(**inputs, max_new_tokens=50)
85
 
86
+ # Decode and print the response
87
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
88
+ ```
89
 
90
+ ---
91
 
92
+ ## Citation
93
+
94
+ If you find this model or our research useful, please consider citing our paper:
95
+
96
+ ```bibtex
97
+ @misc{yin2025segmentingtextlearningrewards,
98
+ title={Segmenting Text and Learning Their Rewards for Improved RLHF in Language Model},
99
+ author={Yueqin Yin and Shentao Yang and Yujia Xie and Ziyi Yang and Yuting Sun and Hany Awadalla and Weizhu Chen and Mingyuan Zhou},
100
+ year={2025},
101
+ eprint={2501.02790},
102
+ archivePrefix={arXiv},
103
+ primaryClass={cs.CL},
104
+ url={https://arxiv.org/abs/2501.02790},
105
+ }
106
+ ```