|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Calculate quality metrics for previous training run or pretrained network pickle.""" |
|
|
|
import os |
|
import click |
|
import json |
|
import tempfile |
|
import copy |
|
import torch |
|
import dnnlib |
|
|
|
import legacy |
|
from metrics import metric_main |
|
from metrics import metric_utils |
|
from torch_utils import training_stats |
|
from torch_utils import custom_ops |
|
from torch_utils import misc |
|
|
|
|
|
|
|
def subprocess_fn(rank, args, temp_dir): |
|
dnnlib.util.Logger(should_flush=True) |
|
|
|
|
|
if args.num_gpus > 1: |
|
init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init')) |
|
if os.name == 'nt': |
|
init_method = 'file:///' + init_file.replace('\\', '/') |
|
torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=args.num_gpus) |
|
else: |
|
init_method = f'file://{init_file}' |
|
torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=args.num_gpus) |
|
|
|
|
|
sync_device = torch.device('cuda', rank) if args.num_gpus > 1 else None |
|
training_stats.init_multiprocessing(rank=rank, sync_device=sync_device) |
|
if rank != 0 or not args.verbose: |
|
custom_ops.verbosity = 'none' |
|
|
|
|
|
device = torch.device('cuda', rank) |
|
torch.backends.cudnn.benchmark = True |
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
torch.backends.cudnn.allow_tf32 = False |
|
G = copy.deepcopy(args.G).eval().requires_grad_(False).to(device) |
|
if rank == 0 and args.verbose: |
|
z = torch.empty([1, G.z_dim], device=device) |
|
c = torch.empty([1, G.c_dim], device=device) |
|
misc.print_module_summary(G, [z, c]) |
|
|
|
|
|
for metric in args.metrics: |
|
if rank == 0 and args.verbose: |
|
print(f'Calculating {metric}...') |
|
progress = metric_utils.ProgressMonitor(verbose=args.verbose) |
|
result_dict = metric_main.calc_metric(metric=metric, G=G, dataset_kwargs=args.dataset_kwargs, |
|
num_gpus=args.num_gpus, rank=rank, device=device, progress=progress) |
|
if rank == 0: |
|
metric_main.report_metric(result_dict, run_dir=args.run_dir, snapshot_pkl=args.network_pkl) |
|
if rank == 0 and args.verbose: |
|
print() |
|
|
|
|
|
if rank == 0 and args.verbose: |
|
print('Exiting...') |
|
|
|
|
|
|
|
class CommaSeparatedList(click.ParamType): |
|
name = 'list' |
|
|
|
def convert(self, value, param, ctx): |
|
_ = param, ctx |
|
if value is None or value.lower() == 'none' or value == '': |
|
return [] |
|
return value.split(',') |
|
|
|
|
|
|
|
@click.command() |
|
@click.pass_context |
|
@click.option('network_pkl', '--network', help='Network pickle filename or URL', metavar='PATH', required=True) |
|
@click.option('--metrics', help='Comma-separated list or "none"', type=CommaSeparatedList(), default='fid50k_full', show_default=True) |
|
@click.option('--data', help='Dataset to evaluate metrics against (directory or zip) [default: same as training data]', metavar='PATH') |
|
@click.option('--mirror', help='Whether the dataset was augmented with x-flips during training [default: look up]', type=bool, metavar='BOOL') |
|
@click.option('--gpus', help='Number of GPUs to use', type=int, default=1, metavar='INT', show_default=True) |
|
@click.option('--verbose', help='Print optional information', type=bool, default=True, metavar='BOOL', show_default=True) |
|
|
|
def calc_metrics(ctx, network_pkl, metrics, data, mirror, gpus, verbose): |
|
"""Calculate quality metrics for previous training run or pretrained network pickle. |
|
|
|
Examples: |
|
|
|
\b |
|
# Previous training run: look up options automatically, save result to JSONL file. |
|
python calc_metrics.py --metrics=pr50k3_full \\ |
|
--network=~/training-runs/00000-ffhq10k-res64-auto1/network-snapshot-000000.pkl |
|
|
|
\b |
|
# Pre-trained network pickle: specify dataset explicitly, print result to stdout. |
|
python calc_metrics.py --metrics=fid50k_full --data=~/datasets/ffhq.zip --mirror=1 \\ |
|
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl |
|
|
|
Available metrics: |
|
|
|
\b |
|
ADA paper: |
|
fid50k_full Frechet inception distance against the full dataset. |
|
kid50k_full Kernel inception distance against the full dataset. |
|
pr50k3_full Precision and recall againt the full dataset. |
|
is50k Inception score for CIFAR-10. |
|
|
|
\b |
|
StyleGAN and StyleGAN2 papers: |
|
fid50k Frechet inception distance against 50k real images. |
|
kid50k Kernel inception distance against 50k real images. |
|
pr50k3 Precision and recall against 50k real images. |
|
ppl2_wend Perceptual path length in W at path endpoints against full image. |
|
ppl_zfull Perceptual path length in Z for full paths against cropped image. |
|
ppl_wfull Perceptual path length in W for full paths against cropped image. |
|
ppl_zend Perceptual path length in Z at path endpoints against cropped image. |
|
ppl_wend Perceptual path length in W at path endpoints against cropped image. |
|
""" |
|
dnnlib.util.Logger(should_flush=True) |
|
|
|
|
|
args = dnnlib.EasyDict(metrics=metrics, num_gpus=gpus, network_pkl=network_pkl, verbose=verbose) |
|
if not all(metric_main.is_valid_metric(metric) for metric in args.metrics): |
|
ctx.fail('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics())) |
|
if not args.num_gpus >= 1: |
|
ctx.fail('--gpus must be at least 1') |
|
|
|
|
|
if not dnnlib.util.is_url(network_pkl, allow_file_urls=True) and not os.path.isfile(network_pkl): |
|
ctx.fail('--network must point to a file or URL') |
|
if args.verbose: |
|
print(f'Loading network from "{network_pkl}"...') |
|
with dnnlib.util.open_url(network_pkl, verbose=args.verbose) as f: |
|
network_dict = legacy.load_network_pkl(f) |
|
args.G = network_dict['G_ema'] |
|
|
|
|
|
if data is not None: |
|
args.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data) |
|
elif network_dict['training_set_kwargs'] is not None: |
|
args.dataset_kwargs = dnnlib.EasyDict(network_dict['training_set_kwargs']) |
|
else: |
|
ctx.fail('Could not look up dataset options; please specify --data') |
|
|
|
|
|
args.dataset_kwargs.resolution = args.G.img_resolution |
|
args.dataset_kwargs.use_labels = (args.G.c_dim != 0) |
|
if mirror is not None: |
|
args.dataset_kwargs.xflip = mirror |
|
|
|
|
|
if args.verbose: |
|
print('Dataset options:') |
|
print(json.dumps(args.dataset_kwargs, indent=2)) |
|
|
|
|
|
args.run_dir = None |
|
if os.path.isfile(network_pkl): |
|
pkl_dir = os.path.dirname(network_pkl) |
|
if os.path.isfile(os.path.join(pkl_dir, 'training_options.json')): |
|
args.run_dir = pkl_dir |
|
|
|
|
|
if args.verbose: |
|
print('Launching processes...') |
|
torch.multiprocessing.set_start_method('spawn') |
|
with tempfile.TemporaryDirectory() as temp_dir: |
|
if args.num_gpus == 1: |
|
subprocess_fn(rank=0, args=args, temp_dir=temp_dir) |
|
else: |
|
torch.multiprocessing.spawn(fn=subprocess_fn, args=(args, temp_dir), nprocs=args.num_gpus) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
calc_metrics() |
|
|
|
|
|
|