|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import click |
|
import pickle |
|
import re |
|
import copy |
|
import numpy as np |
|
import torch |
|
import dnnlib |
|
from torch_utils import misc |
|
|
|
|
|
|
|
def load_network_pkl(f, force_fp16=False): |
|
data = _LegacyUnpickler(f).load() |
|
|
|
|
|
if isinstance(data, tuple) and len(data) == 3 and all(isinstance(net, _TFNetworkStub) for net in data): |
|
tf_G, tf_D, tf_Gs = data |
|
G = convert_tf_generator(tf_G) |
|
D = convert_tf_discriminator(tf_D) |
|
G_ema = convert_tf_generator(tf_Gs) |
|
data = dict(G=G, D=D, G_ema=G_ema) |
|
|
|
|
|
for k, v in data.items(): |
|
if isinstance(v, _DDPNetworkStub): |
|
data[k] = v._modules['module'] |
|
|
|
|
|
if 'training_set_kwargs' not in data: |
|
data['training_set_kwargs'] = None |
|
if 'augment_pipe' not in data: |
|
data['augment_pipe'] = None |
|
|
|
|
|
assert isinstance(data['G'], torch.nn.Module) |
|
assert isinstance(data['D'], torch.nn.Module) |
|
assert isinstance(data['G_ema'], torch.nn.Module) |
|
assert isinstance(data['training_set_kwargs'], (dict, type(None))) |
|
assert isinstance(data['augment_pipe'], (torch.nn.Module, type(None))) |
|
|
|
|
|
if force_fp16: |
|
for key in ['G', 'D', 'G_ema']: |
|
old = data[key] |
|
kwargs = copy.deepcopy(old.init_kwargs) |
|
if key.startswith('G'): |
|
kwargs.synthesis_kwargs = dnnlib.EasyDict(kwargs.get('synthesis_kwargs', {})) |
|
kwargs.synthesis_kwargs.num_fp16_res = 4 |
|
kwargs.synthesis_kwargs.conv_clamp = 256 |
|
if key.startswith('D'): |
|
kwargs.num_fp16_res = 4 |
|
kwargs.conv_clamp = 256 |
|
if kwargs != old.init_kwargs: |
|
new = type(old)(**kwargs).eval().requires_grad_(False) |
|
misc.copy_params_and_buffers(old, new, require_all=True) |
|
data[key] = new |
|
return data |
|
|
|
|
|
|
|
class _DDPNetworkStub(dnnlib.EasyDict): |
|
pass |
|
|
|
class _TFNetworkStub(dnnlib.EasyDict): |
|
pass |
|
|
|
class _LegacyUnpickler(pickle.Unpickler): |
|
def find_class(self, module, name): |
|
if module == 'torch.nn.parallel.distributed' and name == 'DistributedDataParallel': |
|
return _DDPNetworkStub |
|
if module == 'dnnlib.tflib.network' and name == 'Network': |
|
return _TFNetworkStub |
|
if module == 'training.augment': |
|
return _TFNetworkStub |
|
return super().find_class(module, name) |
|
|
|
|
|
|
|
def _collect_tf_params(tf_net): |
|
|
|
tf_params = dict() |
|
def recurse(prefix, tf_net): |
|
for name, value in tf_net.variables: |
|
tf_params[prefix + name] = value |
|
for name, comp in tf_net.components.items(): |
|
recurse(prefix + name + '/', comp) |
|
recurse('', tf_net) |
|
return tf_params |
|
|
|
|
|
|
|
def _populate_module_params(module, *patterns): |
|
for name, tensor in misc.named_params_and_buffers(module): |
|
found = False |
|
value = None |
|
for pattern, value_fn in zip(patterns[0::2], patterns[1::2]): |
|
match = re.fullmatch(pattern, name) |
|
if match: |
|
found = True |
|
if value_fn is not None: |
|
value = value_fn(*match.groups()) |
|
break |
|
try: |
|
assert found |
|
if value is not None: |
|
tensor.copy_(torch.from_numpy(np.array(value))) |
|
except: |
|
print(name, list(tensor.shape)) |
|
raise |
|
|
|
|
|
|
|
def convert_tf_generator(tf_G): |
|
if tf_G.version < 4: |
|
raise ValueError('TensorFlow pickle version too low') |
|
|
|
|
|
tf_kwargs = tf_G.static_kwargs |
|
known_kwargs = set() |
|
def kwarg(tf_name, default=None, none=None): |
|
known_kwargs.add(tf_name) |
|
val = tf_kwargs.get(tf_name, default) |
|
return val if val is not None else none |
|
|
|
|
|
kwargs = dnnlib.EasyDict( |
|
z_dim = kwarg('latent_size', 512), |
|
c_dim = kwarg('label_size', 0), |
|
w_dim = kwarg('dlatent_size', 512), |
|
img_resolution = kwarg('resolution', 1024), |
|
img_channels = kwarg('num_channels', 3), |
|
mapping_kwargs = dnnlib.EasyDict( |
|
num_layers = kwarg('mapping_layers', 8), |
|
embed_features = kwarg('label_fmaps', None), |
|
layer_features = kwarg('mapping_fmaps', None), |
|
activation = kwarg('mapping_nonlinearity', 'lrelu'), |
|
lr_multiplier = kwarg('mapping_lrmul', 0.01), |
|
w_avg_beta = kwarg('w_avg_beta', 0.995, none=1), |
|
), |
|
synthesis_kwargs = dnnlib.EasyDict( |
|
channel_base = kwarg('fmap_base', 16384) * 2, |
|
channel_max = kwarg('fmap_max', 512), |
|
num_fp16_res = kwarg('num_fp16_res', 0), |
|
conv_clamp = kwarg('conv_clamp', None), |
|
architecture = kwarg('architecture', 'skip'), |
|
resample_filter = kwarg('resample_kernel', [1,3,3,1]), |
|
use_noise = kwarg('use_noise', True), |
|
activation = kwarg('nonlinearity', 'lrelu'), |
|
), |
|
) |
|
|
|
|
|
kwarg('truncation_psi') |
|
kwarg('truncation_cutoff') |
|
kwarg('style_mixing_prob') |
|
kwarg('structure') |
|
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs) |
|
if len(unknown_kwargs) > 0: |
|
raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0]) |
|
|
|
|
|
tf_params = _collect_tf_params(tf_G) |
|
for name, value in list(tf_params.items()): |
|
match = re.fullmatch(r'ToRGB_lod(\d+)/(.*)', name) |
|
if match: |
|
r = kwargs.img_resolution // (2 ** int(match.group(1))) |
|
tf_params[f'{r}x{r}/ToRGB/{match.group(2)}'] = value |
|
kwargs.synthesis.kwargs.architecture = 'orig' |
|
|
|
|
|
|
|
from training import networks |
|
G = networks.Generator(**kwargs).eval().requires_grad_(False) |
|
|
|
_populate_module_params(G, |
|
r'mapping\.w_avg', lambda: tf_params[f'dlatent_avg'], |
|
r'mapping\.embed\.weight', lambda: tf_params[f'mapping/LabelEmbed/weight'].transpose(), |
|
r'mapping\.embed\.bias', lambda: tf_params[f'mapping/LabelEmbed/bias'], |
|
r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'mapping/Dense{i}/weight'].transpose(), |
|
r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'mapping/Dense{i}/bias'], |
|
r'synthesis\.b4\.const', lambda: tf_params[f'synthesis/4x4/Const/const'][0], |
|
r'synthesis\.b4\.conv1\.weight', lambda: tf_params[f'synthesis/4x4/Conv/weight'].transpose(3, 2, 0, 1), |
|
r'synthesis\.b4\.conv1\.bias', lambda: tf_params[f'synthesis/4x4/Conv/bias'], |
|
r'synthesis\.b4\.conv1\.noise_const', lambda: tf_params[f'synthesis/noise0'][0, 0], |
|
r'synthesis\.b4\.conv1\.noise_strength', lambda: tf_params[f'synthesis/4x4/Conv/noise_strength'], |
|
r'synthesis\.b4\.conv1\.affine\.weight', lambda: tf_params[f'synthesis/4x4/Conv/mod_weight'].transpose(), |
|
r'synthesis\.b4\.conv1\.affine\.bias', lambda: tf_params[f'synthesis/4x4/Conv/mod_bias'] + 1, |
|
r'synthesis\.b(\d+)\.conv0\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/weight'][::-1, ::-1].transpose(3, 2, 0, 1), |
|
r'synthesis\.b(\d+)\.conv0\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/bias'], |
|
r'synthesis\.b(\d+)\.conv0\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-5}'][0, 0], |
|
r'synthesis\.b(\d+)\.conv0\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/noise_strength'], |
|
r'synthesis\.b(\d+)\.conv0\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_weight'].transpose(), |
|
r'synthesis\.b(\d+)\.conv0\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv0_up/mod_bias'] + 1, |
|
r'synthesis\.b(\d+)\.conv1\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/weight'].transpose(3, 2, 0, 1), |
|
r'synthesis\.b(\d+)\.conv1\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/bias'], |
|
r'synthesis\.b(\d+)\.conv1\.noise_const', lambda r: tf_params[f'synthesis/noise{int(np.log2(int(r)))*2-4}'][0, 0], |
|
r'synthesis\.b(\d+)\.conv1\.noise_strength', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/noise_strength'], |
|
r'synthesis\.b(\d+)\.conv1\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_weight'].transpose(), |
|
r'synthesis\.b(\d+)\.conv1\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/Conv1/mod_bias'] + 1, |
|
r'synthesis\.b(\d+)\.torgb\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/weight'].transpose(3, 2, 0, 1), |
|
r'synthesis\.b(\d+)\.torgb\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/bias'], |
|
r'synthesis\.b(\d+)\.torgb\.affine\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_weight'].transpose(), |
|
r'synthesis\.b(\d+)\.torgb\.affine\.bias', lambda r: tf_params[f'synthesis/{r}x{r}/ToRGB/mod_bias'] + 1, |
|
r'synthesis\.b(\d+)\.skip\.weight', lambda r: tf_params[f'synthesis/{r}x{r}/Skip/weight'][::-1, ::-1].transpose(3, 2, 0, 1), |
|
r'.*\.resample_filter', None, |
|
) |
|
return G |
|
|
|
|
|
|
|
def convert_tf_discriminator(tf_D): |
|
if tf_D.version < 4: |
|
raise ValueError('TensorFlow pickle version too low') |
|
|
|
|
|
tf_kwargs = tf_D.static_kwargs |
|
known_kwargs = set() |
|
def kwarg(tf_name, default=None): |
|
known_kwargs.add(tf_name) |
|
return tf_kwargs.get(tf_name, default) |
|
|
|
|
|
kwargs = dnnlib.EasyDict( |
|
c_dim = kwarg('label_size', 0), |
|
img_resolution = kwarg('resolution', 1024), |
|
img_channels = kwarg('num_channels', 3), |
|
architecture = kwarg('architecture', 'resnet'), |
|
channel_base = kwarg('fmap_base', 16384) * 2, |
|
channel_max = kwarg('fmap_max', 512), |
|
num_fp16_res = kwarg('num_fp16_res', 0), |
|
conv_clamp = kwarg('conv_clamp', None), |
|
cmap_dim = kwarg('mapping_fmaps', None), |
|
block_kwargs = dnnlib.EasyDict( |
|
activation = kwarg('nonlinearity', 'lrelu'), |
|
resample_filter = kwarg('resample_kernel', [1,3,3,1]), |
|
freeze_layers = kwarg('freeze_layers', 0), |
|
), |
|
mapping_kwargs = dnnlib.EasyDict( |
|
num_layers = kwarg('mapping_layers', 0), |
|
embed_features = kwarg('mapping_fmaps', None), |
|
layer_features = kwarg('mapping_fmaps', None), |
|
activation = kwarg('nonlinearity', 'lrelu'), |
|
lr_multiplier = kwarg('mapping_lrmul', 0.1), |
|
), |
|
epilogue_kwargs = dnnlib.EasyDict( |
|
mbstd_group_size = kwarg('mbstd_group_size', None), |
|
mbstd_num_channels = kwarg('mbstd_num_features', 1), |
|
activation = kwarg('nonlinearity', 'lrelu'), |
|
), |
|
) |
|
|
|
|
|
kwarg('structure') |
|
unknown_kwargs = list(set(tf_kwargs.keys()) - known_kwargs) |
|
if len(unknown_kwargs) > 0: |
|
raise ValueError('Unknown TensorFlow kwarg', unknown_kwargs[0]) |
|
|
|
|
|
tf_params = _collect_tf_params(tf_D) |
|
for name, value in list(tf_params.items()): |
|
match = re.fullmatch(r'FromRGB_lod(\d+)/(.*)', name) |
|
if match: |
|
r = kwargs.img_resolution // (2 ** int(match.group(1))) |
|
tf_params[f'{r}x{r}/FromRGB/{match.group(2)}'] = value |
|
kwargs.architecture = 'orig' |
|
|
|
|
|
|
|
from training import networks |
|
D = networks.Discriminator(**kwargs).eval().requires_grad_(False) |
|
|
|
_populate_module_params(D, |
|
r'b(\d+)\.fromrgb\.weight', lambda r: tf_params[f'{r}x{r}/FromRGB/weight'].transpose(3, 2, 0, 1), |
|
r'b(\d+)\.fromrgb\.bias', lambda r: tf_params[f'{r}x{r}/FromRGB/bias'], |
|
r'b(\d+)\.conv(\d+)\.weight', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/weight'].transpose(3, 2, 0, 1), |
|
r'b(\d+)\.conv(\d+)\.bias', lambda r, i: tf_params[f'{r}x{r}/Conv{i}{["","_down"][int(i)]}/bias'], |
|
r'b(\d+)\.skip\.weight', lambda r: tf_params[f'{r}x{r}/Skip/weight'].transpose(3, 2, 0, 1), |
|
r'mapping\.embed\.weight', lambda: tf_params[f'LabelEmbed/weight'].transpose(), |
|
r'mapping\.embed\.bias', lambda: tf_params[f'LabelEmbed/bias'], |
|
r'mapping\.fc(\d+)\.weight', lambda i: tf_params[f'Mapping{i}/weight'].transpose(), |
|
r'mapping\.fc(\d+)\.bias', lambda i: tf_params[f'Mapping{i}/bias'], |
|
r'b4\.conv\.weight', lambda: tf_params[f'4x4/Conv/weight'].transpose(3, 2, 0, 1), |
|
r'b4\.conv\.bias', lambda: tf_params[f'4x4/Conv/bias'], |
|
r'b4\.fc\.weight', lambda: tf_params[f'4x4/Dense0/weight'].transpose(), |
|
r'b4\.fc\.bias', lambda: tf_params[f'4x4/Dense0/bias'], |
|
r'b4\.out\.weight', lambda: tf_params[f'Output/weight'].transpose(), |
|
r'b4\.out\.bias', lambda: tf_params[f'Output/bias'], |
|
r'.*\.resample_filter', None, |
|
) |
|
return D |
|
|
|
|
|
|
|
@click.command() |
|
@click.option('--source', help='Input pickle', required=True, metavar='PATH') |
|
@click.option('--dest', help='Output pickle', required=True, metavar='PATH') |
|
@click.option('--force-fp16', help='Force the networks to use FP16', type=bool, default=False, metavar='BOOL', show_default=True) |
|
def convert_network_pickle(source, dest, force_fp16): |
|
"""Convert legacy network pickle into the native PyTorch format. |
|
|
|
The tool is able to load the main network configurations exported using the TensorFlow version of StyleGAN2 or StyleGAN2-ADA. |
|
It does not support e.g. StyleGAN2-ADA comparison methods, StyleGAN2 configs A-D, or StyleGAN1 networks. |
|
|
|
Example: |
|
|
|
\b |
|
python legacy.py \\ |
|
--source=https://nvlabs-fi-cdn.nvidia.com/stylegan2/networks/stylegan2-cat-config-f.pkl \\ |
|
--dest=stylegan2-cat-config-f.pkl |
|
""" |
|
print(f'Loading "{source}"...') |
|
with dnnlib.util.open_url(source) as f: |
|
data = load_network_pkl(f, force_fp16=force_fp16) |
|
print(f'Saving "{dest}"...') |
|
with open(dest, 'wb') as f: |
|
pickle.dump(data, f) |
|
print('Done.') |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
convert_network_pickle() |
|
|
|
|
|
|