# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # NVIDIA CORPORATION and its licensors retain all intellectual property # and proprietary rights in and to this software, related documentation # and any modifications thereto. Any use, reproduction, disclosure or # distribution of this software and related documentation without an express # license agreement from NVIDIA CORPORATION is strictly prohibited. """Train a GAN using the techniques described in the paper "Training Generative Adversarial Networks with Limited Data".""" import os import click import re import json import tempfile import torch import dnnlib from training import training_loop from metrics import metric_main from torch_utils import training_stats from torch_utils import custom_ops #---------------------------------------------------------------------------- class UserError(Exception): pass #---------------------------------------------------------------------------- def setup_training_loop_kwargs( # General options (not included in desc). gpus = None, # Number of GPUs: , default = 1 gpu snap = None, # Snapshot interval: , default = 50 ticks metrics = None, # List of metric names: [], ['fid50k_full'] (default), ... seed = None, # Random seed: , default = 0 # Dataset. data = None, # Training dataset (required): cond = None, # Train conditional model based on dataset labels: , default = False subset = None, # Train with only N images: , default = all mirror = None, # Augment dataset with x-flips: , default = False # Base config. cfg = None, # Base config: 'auto' (default), 'stylegan2', 'paper256', 'paper512', 'paper1024', 'cifar' gamma = None, # Override R1 gamma: kimg = None, # Override training duration: batch = None, # Override batch size: # Discriminator augmentation. aug = None, # Augmentation mode: 'ada' (default), 'noaug', 'fixed' p = None, # Specify p for 'fixed' (required): target = None, # Override ADA target for 'ada': , default = depends on aug # Transfer learning. resume = None, # Load previous network: 'noresume' (default), 'ffhq256', 'ffhq512', 'ffhq1024', 'celebahq256', 'lsundog256', , freezed = None, # Freeze-D: , default = 0 discriminator layers # Performance options (not included in desc). fp32 = None, # Disable mixed-precision training: , default = False nhwc = None, # Use NHWC memory format with FP16: , default = False allow_tf32 = None, # Allow PyTorch to use TF32 for matmul and convolutions: , default = False nobench = None, # Disable cuDNN benchmarking: , default = False workers = None, # Override number of DataLoader workers: , default = 3 # InsGen related options no_insgen = False, # Disable insgen for training: , default = False rqs = None, # Size of real image queue: , default = 5% * len(dataset) fqs = None, # Size of fake image queue: , default = 5% * len(dataset) no_cl_on_g = False, # Disable fake instance discrimination for generator: , default = False ada_linear = False, # Whether to linearly increase the strength of ADA: , default = False # Added exp = None, daug = 'ADA', # Adaptive Diffusion config. beta_schedule = None, beta_start = None, beta_end = None, t_min = None, t_max = None, noise_sd = None, ts_dist = None, ada_maxp = None, ): args = dnnlib.EasyDict() # ------------------------------------------ # General options: gpus, snap, metrics, seed # ------------------------------------------ if gpus is None: gpus = 1 assert isinstance(gpus, int) if not (gpus >= 1 and gpus & (gpus - 1) == 0): raise UserError('--gpus must be a power of two') args.num_gpus = gpus if snap is None: snap = 50 assert isinstance(snap, int) if snap < 1: raise UserError('--snap must be at least 1') args.image_snapshot_ticks = snap args.network_snapshot_ticks = snap if metrics is None: metrics = ['fid50k_full'] assert isinstance(metrics, list) if not all(metric_main.is_valid_metric(metric) for metric in metrics): raise UserError('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics())) args.metrics = metrics if seed is None: seed = 0 assert isinstance(seed, int) args.random_seed = seed # ----------------------------------- # Dataset: data, cond, subset, mirror # ----------------------------------- assert data is not None assert isinstance(data, str) args.training_set_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data, use_labels=True, max_size=None, xflip=False) args.data_loader_kwargs = dnnlib.EasyDict(pin_memory=True, num_workers=3, prefetch_factor=2) try: training_set = dnnlib.util.construct_class_by_name(**args.training_set_kwargs) # subclass of training.dataset.Dataset args.training_set_kwargs.resolution = training_set.resolution # be explicit about resolution args.training_set_kwargs.use_labels = training_set.has_labels # be explicit about labels args.training_set_kwargs.max_size = len(training_set) # be explicit about dataset size desc = training_set.name del training_set # conserve memory except IOError as err: raise UserError(f'--data: {err}') if exp is not None: desc += f'-{exp}' if cond is None: cond = False assert isinstance(cond, bool) if cond: if not args.training_set_kwargs.use_labels: raise UserError('--cond=True requires labels specified in dataset.json') desc += '-cond' else: args.training_set_kwargs.use_labels = False if subset is not None: assert isinstance(subset, int) if not 1 <= subset <= args.training_set_kwargs.max_size: raise UserError(f'--subset must be between 1 and {args.training_set_kwargs.max_size}') desc += f'-subset{subset}' if subset < args.training_set_kwargs.max_size: args.training_set_kwargs.max_size = subset args.training_set_kwargs.random_seed = args.random_seed if mirror is None: mirror = False assert isinstance(mirror, bool) if mirror: desc += '-mirror' args.training_set_kwargs.xflip = True # ------------------------------------ # Base config: cfg, gamma, kimg, batch # ------------------------------------ if cfg is None: cfg = 'auto' assert isinstance(cfg, str) desc += f'-{cfg}' cfg_specs = { 'auto': dict(ref_gpus=-1, kimg=25000, mb=-1, mbstd=-1, fmaps=-1, lrate=-1, gamma=-1, ema=-1, ramp=0.05, map=2), # Populated dynamically based on resolution and GPU count. 'stylegan2': dict(ref_gpus=8, kimg=25000, mb=32, mbstd=4, fmaps=1, lrate=0.002, gamma=10, ema=10, ramp=None, map=8), # Uses mixed-precision, unlike the original StyleGAN2. 'paper256': dict(ref_gpus=8, kimg=25000, mb=64, mbstd=8, fmaps=0.5, lrate=0.0025, gamma=1, ema=20, ramp=None, map=8), 'paper512': dict(ref_gpus=8, kimg=25000, mb=64, mbstd=8, fmaps=1, lrate=0.0025, gamma=0.5, ema=20, ramp=None, map=8), 'paper1024': dict(ref_gpus=8, kimg=25000, mb=32, mbstd=4, fmaps=1, lrate=0.002, gamma=2, ema=10, ramp=None, map=8), 'cifar': dict(ref_gpus=4, kimg=100000, mb=64, mbstd=32, fmaps=1, lrate=0.0025, gamma=0.01, ema=500, ramp=0.05, map=2), } assert cfg in cfg_specs spec = dnnlib.EasyDict(cfg_specs[cfg]) if cfg == 'auto': desc += f'{gpus:d}' spec.ref_gpus = gpus res = args.training_set_kwargs.resolution spec.mb = max(min(gpus * min(4096 // res, 32), 64), gpus) # keep gpu memory consumption at bay spec.mbstd = min(spec.mb // gpus, 4) # other hyperparams behave more predictably if mbstd group size remains fixed spec.fmaps = 1 if res >= 512 else 0.5 spec.lrate = 0.002 if res >= 1024 else 0.0025 spec.gamma = 0.0002 * (res ** 2) / spec.mb # heuristic formula spec.ema = spec.mb * 10 / 32 args.G_kwargs = dnnlib.EasyDict(class_name='training.networks.Generator', z_dim=512, w_dim=512, mapping_kwargs=dnnlib.EasyDict(), synthesis_kwargs=dnnlib.EasyDict()) args.D_kwargs = dnnlib.EasyDict(class_name='training.networks.Discriminator', block_kwargs=dnnlib.EasyDict(), mapping_kwargs=dnnlib.EasyDict(), epilogue_kwargs=dnnlib.EasyDict()) args.G_kwargs.synthesis_kwargs.channel_base = args.D_kwargs.channel_base = int(spec.fmaps * 32768) args.G_kwargs.synthesis_kwargs.channel_max = args.D_kwargs.channel_max = 512 args.G_kwargs.mapping_kwargs.num_layers = spec.map args.G_kwargs.synthesis_kwargs.num_fp16_res = args.D_kwargs.num_fp16_res = 4 # enable mixed-precision training args.G_kwargs.synthesis_kwargs.conv_clamp = args.D_kwargs.conv_clamp = 256 # clamp activations to avoid float16 overflow args.D_kwargs.epilogue_kwargs.mbstd_group_size = spec.mbstd args.D_kwargs.mapping_kwargs.num_layers = 0 # align with tensorflow implementation of ADA args.G_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', lr=spec.lrate, betas=[0,0.99], eps=1e-8) args.D_opt_kwargs = dnnlib.EasyDict(class_name='torch.optim.Adam', lr=spec.lrate, betas=[0,0.99], eps=1e-8) args.loss_kwargs = dnnlib.EasyDict(class_name='training.loss.StyleGAN2Loss', r1_gamma=spec.gamma) args.total_kimg = spec.kimg args.batch_size = spec.mb args.batch_gpu = spec.mb // spec.ref_gpus args.ema_kimg = spec.ema args.ema_rampup = spec.ramp if cfg == 'cifar': args.loss_kwargs.pl_weight = 0 # disable path length regularization args.loss_kwargs.style_mixing_prob = 0 # disable style mixing args.D_kwargs.architecture = 'orig' # disable residual skip connections if gamma is not None: assert isinstance(gamma, float) if not gamma >= 0: raise UserError('--gamma must be non-negative') desc += f'-gamma{gamma:g}' args.loss_kwargs.r1_gamma = gamma if kimg is not None: assert isinstance(kimg, int) if not kimg >= 1: raise UserError('--kimg must be at least 1') desc += f'-kimg{kimg:d}' args.total_kimg = kimg if batch is not None: assert isinstance(batch, int) if not (batch >= 1 and batch % gpus == 0): raise UserError('--batch must be at least 1 and divisible by --gpus') desc += f'-batch{batch}' args.batch_size = batch args.batch_gpu = batch // gpus # --------------------------------------------------- # Discriminator augmentation: aug, p, target, augpipe # --------------------------------------------------- if aug is None: aug = 'ada' else: assert isinstance(aug, str) desc += f'-{aug}' if aug == 'ada': args.ada_target = 0.6 elif aug == 'noaug': pass elif aug == 'fixed': if p is None: raise UserError(f'--aug={aug} requires specifying --p') else: raise UserError(f'--aug={aug} not supported') if p is not None: assert isinstance(p, float) if aug != 'fixed': raise UserError('--p can only be specified with --aug=fixed') if not 0 <= p <= 1: raise UserError('--p must be between 0 and 1') desc += f'-p{p:g}' args.augment_p = p if target is not None: assert isinstance(target, float) if aug != 'ada': raise UserError('--target can only be specified with --aug=ada') if not 0 <= target <= 1: raise UserError('--target must be between 0 and 1') desc += f'-target{target:g}' args.ada_target = target diffusion_specs = dict(beta_schedule=beta_schedule, beta_start=beta_start, beta_end=beta_end, t_min=t_min, t_max=t_max, noise_std=noise_sd, aug=daug, ada_maxp=ada_maxp, ts_dist=ts_dist) desc += f"-ts_dist-{ts_dist}" if aug != 'noaug': args.augment_kwargs = dnnlib.EasyDict(class_name='training.augment.AugmentPipe', **diffusion_specs) # ---------------------------------- # Transfer learning: resume, freezed # ---------------------------------- resume_specs = { 'ffhq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res256-mirror-paper256-noaug.pkl', 'ffhq512': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res512-mirror-stylegan2-noaug.pkl', 'ffhq1024': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/ffhq-res1024-mirror-stylegan2-noaug.pkl', 'celebahq256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/celebahq-res256-mirror-paper256-kimg100000-ada-target0.5.pkl', 'lsundog256': 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/transfer-learning-source-nets/lsundog-res256-paper256-kimg100000-noaug.pkl', } assert resume is None or isinstance(resume, str) if resume is None: resume = 'noresume' elif resume == 'noresume': desc += '-noresume' elif resume in resume_specs: desc += f'-resume{resume}' args.resume_pkl = resume_specs[resume] # predefined url else: desc += '-resumecustom' args.resume_pkl = resume # custom path or url if resume != 'noresume': args.ada_kimg = 100 # make ADA react faster at the beginning args.ema_rampup = None # disable EMA rampup args.ada_kimg = 100 if freezed is not None: assert isinstance(freezed, int) if not freezed >= 0: raise UserError('--freezed must be non-negative') desc += f'-freezed{freezed:d}' args.D_kwargs.block_kwargs.freeze_layers = freezed # ------------------------------------------------- # Performance options: fp32, nhwc, nobench, workers # ------------------------------------------------- if fp32 is None: fp32 = False assert isinstance(fp32, bool) if fp32: args.G_kwargs.synthesis_kwargs.num_fp16_res = args.D_kwargs.num_fp16_res = 0 args.G_kwargs.synthesis_kwargs.conv_clamp = args.D_kwargs.conv_clamp = None if nhwc is None: nhwc = False assert isinstance(nhwc, bool) if nhwc: args.G_kwargs.synthesis_kwargs.fp16_channels_last = args.D_kwargs.block_kwargs.fp16_channels_last = True if nobench is None: nobench = False assert isinstance(nobench, bool) if nobench: args.cudnn_benchmark = False if allow_tf32 is None: allow_tf32 = False assert isinstance(allow_tf32, bool) if allow_tf32: args.allow_tf32 = True if workers is not None: assert isinstance(workers, int) if not workers >= 1: raise UserError('--workers must be at least 1') args.data_loader_kwargs.num_workers = workers # ---------------------------------------------------- # InsGen: contrastive_head, no_cl_on_g, cl_loss_weight # ---------------------------------------------------- use_insgen = True if no_insgen is not None: assert isinstance(no_insgen, bool) use_insgen = not no_insgen if use_insgen: # Overwrite class name of loss function args.loss_kwargs.class_name = 'training.contrastive_loss.StyleGAN2LossCL' args.DHead_kwargs = dnnlib.EasyDict(class_name='training.contrastive_head.CLHead', inplanes=512, temperature=0.2, momentum=0.999, queue_size=-1) args.GHead_kwargs = dnnlib.EasyDict(class_name='training.contrastive_head.CLHead', inplanes=512, temperature=0.2, momentum=0.999, queue_size=-1) # Default queue size is 0.05 * len(dataset) default_queue_size = int(0.05 * args.training_set_kwargs.max_size) if args.training_set_kwargs.xflip: default_queue_size *= 2 args.DHead_kwargs.queue_size = default_queue_size if rqs is None else rqs args.GHead_kwargs.queue_size = default_queue_size if fqs is None else fqs if no_cl_on_g is not None: assert isinstance(no_cl_on_g, bool) args.no_cl_on_g = no_cl_on_g if ada_linear is not None: assert isinstance(ada_linear, bool) args.ada_linear = ada_linear # Default loss weight for real instance discrimination, fake instance discrimination and fake instance discrimination on g args.cl_loss_weight = dnnlib.EasyDict(lw_real_cl=1.0, lw_fake_cl=1.0, lw_fake_cl_on_g=0.1) else: args.DHead_kwargs = None args.GHead_kwargs = None return desc, args #---------------------------------------------------------------------------- def subprocess_fn(rank, args, temp_dir): dnnlib.util.Logger(file_name=os.path.join(args.run_dir, 'log.txt'), file_mode='a', should_flush=True) # Init torch.distributed. if args.num_gpus > 1: init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init')) if os.name == 'nt': init_method = 'file:///' + init_file.replace('\\', '/') torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=args.num_gpus) else: init_method = f'file://{init_file}' torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=args.num_gpus) # Init torch_utils. sync_device = torch.device('cuda', rank) if args.num_gpus > 1 else None training_stats.init_multiprocessing(rank=rank, sync_device=sync_device) if rank != 0: custom_ops.verbosity = 'none' # Execute training loop. training_loop.training_loop(rank=rank, **args) #---------------------------------------------------------------------------- class CommaSeparatedList(click.ParamType): name = 'list' def convert(self, value, param, ctx): _ = param, ctx if value is None or value.lower() == 'none' or value == '': return [] return value.split(',') #---------------------------------------------------------------------------- @click.command() @click.pass_context # General options. @click.option('--outdir', help='Where to save the results', required=True, metavar='DIR') @click.option('--gpus', help='Number of GPUs to use [default: 1]', type=int, metavar='INT') @click.option('--snap', help='Snapshot interval [default: 50 ticks]', type=int, metavar='INT') @click.option('--metrics', help='Comma-separated list or "none" [default: fid50k_full]', type=CommaSeparatedList()) @click.option('--seed', help='Random seed [default: 0]', type=int, metavar='INT') @click.option('-n', '--dry-run', help='Print training options and exit', is_flag=True) @click.option('--exp', help='exp id', type=str) # Dataset. @click.option('--data', help='Training data (directory or zip)', metavar='PATH', required=True) @click.option('--cond', help='Train conditional model based on dataset labels [default: false]', type=bool, metavar='BOOL') @click.option('--subset', help='Train with only N images [default: all]', type=int, metavar='INT') @click.option('--mirror', help='Enable dataset x-flips [default: false]', type=bool, metavar='BOOL', default=1) # Base config. @click.option('--cfg', help='Base config [default: auto]', type=click.Choice(['auto', 'stylegan2', 'paper256', 'paper512', 'paper1024', 'cifar'])) @click.option('--gamma', help='Override R1 gamma', type=float) @click.option('--kimg', help='Override training duration', type=int, metavar='INT') @click.option('--batch', help='Override batch size', type=int, metavar='INT') # Discriminator augmentation. @click.option('--aug', help='Augmentation mode [default: ada]', type=click.Choice(['noaug', 'ada', 'fixed'])) @click.option('--daug', help='Augmentation mode [default: ada]', type=click.Choice(['NO', 'ADA', 'DIFF']), default='ADA') @click.option('--p', help='Augmentation probability for --aug=fixed', type=float) # Adaptive diffusion config. @click.option('--beta_schedule', help='Forward diffusion beta schedule (we use linear always)', type=str, default='linear') @click.option('--beta_start', help='Forward diffusion process beta_start', type=float, default=1e-4) @click.option('--beta_end', help='Forward diffusion process beta_end', type=float, default=2e-2) @click.option('--t_min', help='Minimum # of timesteps for adaptively modification', type=int, default=10) @click.option('--t_max', help='Maximum # of timesteps for adaptively modification', type=int, default=500) @click.option('--noise_sd', help='Diffusion noise standard deviation', type=float, default=0.05) @click.option('--ts_dist', help='Diffusion t sampling way', type=click.Choice(['priority', 'uniform']), default='uniform') @click.option('--target', help='Discriminator target value', type=float, default=0.6) # Transfer learning. @click.option('--resume', help='Resume training [default: noresume]', metavar='PKL') @click.option('--freezed', help='Freeze-D [default: 0 layers]', type=int, metavar='INT') # Performance options. @click.option('--fp32', help='Disable mixed-precision training', type=bool, metavar='BOOL') @click.option('--nhwc', help='Use NHWC memory format with FP16', type=bool, metavar='BOOL') @click.option('--nobench', help='Disable cuDNN benchmarking', type=bool, metavar='BOOL') @click.option('--allow-tf32', help='Allow PyTorch to use TF32 internally', type=bool, metavar='BOOL') @click.option('--workers', help='Override number of DataLoader workers', type=int, metavar='INT') # InsGen related options. @click.option('--no_insgen', help='Disable InsGen back to ADA [default: False]', type=bool, metavar='BOOL') @click.option('--rqs', help='Size of real image queue [default: 5% * len(dataset)]', type=int, metavar='INT') @click.option('--fqs', help='Size of fake image queue [default: 5% * len(dataset)]', type=int, metavar='INT') @click.option('--no_cl_on_g', help='Disable fake instance discrimination for generator [default: False]', type=bool, metavar='BOOL') @click.option('--ada_linear', help='Whether to linearly increase the strength of ADA [default: False]', type=bool, metavar='BOOL') def main(ctx, outdir, dry_run, **config_kwargs): """Train a GAN using the techniques described in the paper "Training Generative Adversarial Networks with Limited Data". Examples: \b # Train with custom dataset using 1 GPU. python train.py --outdir=~/training-runs --data=~/mydataset.zip --gpus=1 \b # Train class-conditional CIFAR-10 using 2 GPUs. python train.py --outdir=~/training-runs --data=~/datasets/cifar10.zip \\ --gpus=2 --cfg=cifar --cond=1 \b # Transfer learn MetFaces from FFHQ using 4 GPUs. python train.py --outdir=~/training-runs --data=~/datasets/metfaces.zip \\ --gpus=4 --cfg=paper1024 --mirror=1 --resume=ffhq1024 --snap=10 \b # Reproduce original StyleGAN2 config F. python train.py --outdir=~/training-runs --data=~/datasets/ffhq.zip \\ --gpus=8 --cfg=stylegan2 --mirror=1 --aug=noaug \b Base configs (--cfg): auto Automatically select reasonable defaults based on resolution and GPU count. Good starting point for new datasets. stylegan2 Reproduce results for StyleGAN2 config F at 1024x1024. paper256 Reproduce results for FFHQ and LSUN Cat at 256x256. paper512 Reproduce results for BreCaHAD and AFHQ at 512x512. paper1024 Reproduce results for MetFaces at 1024x1024. cifar Reproduce results for CIFAR-10 at 32x32. \b Transfer learning source networks (--resume): ffhq256 FFHQ trained at 256x256 resolution. ffhq512 FFHQ trained at 512x512 resolution. ffhq1024 FFHQ trained at 1024x1024 resolution. celebahq256 CelebA-HQ trained at 256x256 resolution. lsundog256 LSUN Dog trained at 256x256 resolution. Custom network pickle. """ dnnlib.util.Logger(should_flush=True) # Setup training options. try: run_desc, args = setup_training_loop_kwargs(**config_kwargs) except UserError as err: ctx.fail(err) # Pick output directory. prev_run_dirs = [] if os.path.isdir(outdir): prev_run_dirs = [x for x in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, x))] matching_dirs = [re.fullmatch(r'\d{5}' + f'-{run_desc}', x) for x in prev_run_dirs if re.fullmatch(r'\d{5}' + f'-{run_desc}', x) is not None] if len(matching_dirs) > 0: # expect unique desc, continue in this directory assert len(matching_dirs) == 1, f'Multiple directories found for resuming: {matching_dirs}' run_dir = os.path.join(outdir, matching_dirs[0].group()) else: # fallback to standard prev_run_ids = [re.match(r'^\d+', x) for x in prev_run_dirs] prev_run_ids = [int(x.group()) for x in prev_run_ids if x is not None] cur_run_id = max(prev_run_ids, default=-1) + 1 run_dir = os.path.join(outdir, f'{cur_run_id:05d}-{run_desc}') assert not os.path.exists(run_dir) args.run_dir = run_dir # Print options. print() print('Training options:') print(json.dumps(args, indent=2)) print() print(f'Output directory: {args.run_dir}') print(f'Training data: {args.training_set_kwargs.path}') print(f'Training duration: {args.total_kimg} kimg') print(f'Number of GPUs: {args.num_gpus}') print(f'Number of images: {args.training_set_kwargs.max_size}') print(f'Image resolution: {args.training_set_kwargs.resolution}') print(f'Conditional model: {args.training_set_kwargs.use_labels}') print(f'Dataset x-flips: {args.training_set_kwargs.xflip}') print() # Dry run? if dry_run: print('Dry run; exiting.') return # Create output directory. print('Creating output directory...') os.makedirs(args.run_dir, exist_ok=True) with open(os.path.join(args.run_dir, 'training_options.json'), 'wt') as f: json.dump(args, f, indent=2) # Launch processes. print('Launching processes...') torch.multiprocessing.set_start_method('spawn') with tempfile.TemporaryDirectory() as temp_dir: if args.num_gpus == 1: subprocess_fn(rank=0, args=args, temp_dir=temp_dir) else: torch.multiprocessing.spawn(fn=subprocess_fn, args=(args, temp_dir), nprocs=args.num_gpus) #---------------------------------------------------------------------------- if __name__ == "__main__": main() # pylint: disable=no-value-for-parameter #----------------------------------------------------------------------------