colva_internvl2_4b / configuration_radio.py
zhouyik's picture
Upload folder using huggingface_hub
0e999c2 verified
# Copyright (c) 2023-2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, List, Union, NamedTuple
import torch
from transformers import PretrainedConfig
from .radio_common import RESOURCE_MAP, DEFAULT_VERSION
from .radio_model import Resolution
class RADIOConfig(PretrainedConfig):
"""Pretrained Hugging Face configuration for RADIO models."""
def __init__(
self,
args: Optional[dict] = None,
version: Optional[str] = DEFAULT_VERSION,
patch_size: Optional[int] = None,
max_resolution: Optional[int] = None,
preferred_resolution: Optional[Resolution] = None,
adaptor_names: Union[str, List[str]] = None,
vitdet_window_size: Optional[int] = None,
**kwargs,
):
self.args = args
for field in ["dtype", "amp_dtype"]:
if self.args is not None and field in self.args:
# Convert to a string in order to make it serializable.
# For example for torch.float32 we will store "float32",
# for "bfloat16" we will store "bfloat16".
self.args[field] = str(args[field]).split(".")[-1]
self.version = version
resource = RESOURCE_MAP[version]
self.patch_size = patch_size or resource.patch_size
self.max_resolution = max_resolution or resource.max_resolution
self.preferred_resolution = (
preferred_resolution or resource.preferred_resolution
)
self.adaptor_names = adaptor_names
self.vitdet_window_size = vitdet_window_size
super().__init__(**kwargs)