--- license: apache-2.0 base_model: facebook/convnextv2-base-22k-384 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-convnextv2-base-22k-384-finetuned-spiderTraining100-1000 results: [] --- # 10-convnextv2-base-22k-384-finetuned-spiderTraining100-1000 This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2678 - Accuracy: 0.9313 - Precision: 0.9311 - Recall: 0.9308 - F1: 0.9305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 27 - eval_batch_size: 27 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 108 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.4003 | 1.0 | 740 | 1.0372 | 0.7086 | 0.7534 | 0.7061 | 0.7057 | | 1.157 | 2.0 | 1481 | 0.7866 | 0.7733 | 0.8025 | 0.7714 | 0.7726 | | 0.9605 | 3.0 | 2222 | 0.5709 | 0.8352 | 0.8458 | 0.8346 | 0.8345 | | 0.7619 | 4.0 | 2963 | 0.4979 | 0.8576 | 0.8659 | 0.8563 | 0.8571 | | 0.6643 | 5.0 | 3703 | 0.4230 | 0.8807 | 0.8870 | 0.8794 | 0.8797 | | 0.5426 | 6.0 | 4444 | 0.3959 | 0.8898 | 0.8938 | 0.8889 | 0.8887 | | 0.5035 | 7.0 | 5185 | 0.3426 | 0.9041 | 0.9063 | 0.9038 | 0.9034 | | 0.3408 | 8.0 | 5926 | 0.3108 | 0.9188 | 0.9198 | 0.9179 | 0.9180 | | 0.348 | 9.0 | 6666 | 0.2885 | 0.9238 | 0.9245 | 0.9230 | 0.9230 | | 0.3402 | 9.99 | 7400 | 0.2678 | 0.9313 | 0.9311 | 0.9308 | 0.9305 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3