Model save
Browse files
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: facebook/convnextv2-base-22k-384
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
- f1
|
11 |
+
model-index:
|
12 |
+
- name: 10-convnextv2-base-22k-384-finetuned-spiderTraining50-200
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 10-convnextv2-base-22k-384-finetuned-spiderTraining50-200
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.2953
|
24 |
+
- Accuracy: 0.9179
|
25 |
+
- Precision: 0.9143
|
26 |
+
- Recall: 0.9169
|
27 |
+
- F1: 0.9135
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 0.0005
|
47 |
+
- train_batch_size: 27
|
48 |
+
- eval_batch_size: 27
|
49 |
+
- seed: 42
|
50 |
+
- distributed_type: multi-GPU
|
51 |
+
- gradient_accumulation_steps: 4
|
52 |
+
- total_train_batch_size: 108
|
53 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
54 |
+
- lr_scheduler_type: linear
|
55 |
+
- lr_scheduler_warmup_ratio: 0.1
|
56 |
+
- num_epochs: 10
|
57 |
+
|
58 |
+
### Training results
|
59 |
+
|
60 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
61 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
62 |
+
| 1.2896 | 1.0 | 74 | 0.9797 | 0.7057 | 0.7360 | 0.7011 | 0.6843 |
|
63 |
+
| 1.1398 | 1.99 | 148 | 0.9558 | 0.7227 | 0.7691 | 0.7254 | 0.7197 |
|
64 |
+
| 0.7899 | 2.99 | 222 | 0.6987 | 0.7948 | 0.8101 | 0.7890 | 0.7866 |
|
65 |
+
| 0.5357 | 4.0 | 297 | 0.6526 | 0.8148 | 0.8327 | 0.8161 | 0.8104 |
|
66 |
+
| 0.4807 | 5.0 | 371 | 0.5543 | 0.8398 | 0.8512 | 0.8407 | 0.8367 |
|
67 |
+
| 0.3575 | 5.99 | 445 | 0.4465 | 0.8789 | 0.8814 | 0.8790 | 0.8746 |
|
68 |
+
| 0.3728 | 6.99 | 519 | 0.4344 | 0.8819 | 0.8840 | 0.8794 | 0.8772 |
|
69 |
+
| 0.2892 | 8.0 | 594 | 0.3911 | 0.8859 | 0.8879 | 0.8839 | 0.8804 |
|
70 |
+
| 0.2082 | 9.0 | 668 | 0.3256 | 0.9079 | 0.9067 | 0.9091 | 0.9053 |
|
71 |
+
| 0.1737 | 9.97 | 740 | 0.2953 | 0.9179 | 0.9143 | 0.9169 | 0.9135 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.33.3
|
77 |
+
- Pytorch 2.0.1+cu117
|
78 |
+
- Datasets 2.14.5
|
79 |
+
- Tokenizers 0.13.3
|