zkdeng commited on
Commit
98f88fe
·
verified ·
1 Parent(s): 18a1885

Model save

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/convnextv2-base-22k-384
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: 10-convnextv2-base-22k-384-finetuned-spiderTraining50-200
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # 10-convnextv2-base-22k-384-finetuned-spiderTraining50-200
20
+
21
+ This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.2953
24
+ - Accuracy: 0.9179
25
+ - Precision: 0.9143
26
+ - Recall: 0.9169
27
+ - F1: 0.9135
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0005
47
+ - train_batch_size: 27
48
+ - eval_batch_size: 27
49
+ - seed: 42
50
+ - distributed_type: multi-GPU
51
+ - gradient_accumulation_steps: 4
52
+ - total_train_batch_size: 108
53
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
54
+ - lr_scheduler_type: linear
55
+ - lr_scheduler_warmup_ratio: 0.1
56
+ - num_epochs: 10
57
+
58
+ ### Training results
59
+
60
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
61
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
62
+ | 1.2896 | 1.0 | 74 | 0.9797 | 0.7057 | 0.7360 | 0.7011 | 0.6843 |
63
+ | 1.1398 | 1.99 | 148 | 0.9558 | 0.7227 | 0.7691 | 0.7254 | 0.7197 |
64
+ | 0.7899 | 2.99 | 222 | 0.6987 | 0.7948 | 0.8101 | 0.7890 | 0.7866 |
65
+ | 0.5357 | 4.0 | 297 | 0.6526 | 0.8148 | 0.8327 | 0.8161 | 0.8104 |
66
+ | 0.4807 | 5.0 | 371 | 0.5543 | 0.8398 | 0.8512 | 0.8407 | 0.8367 |
67
+ | 0.3575 | 5.99 | 445 | 0.4465 | 0.8789 | 0.8814 | 0.8790 | 0.8746 |
68
+ | 0.3728 | 6.99 | 519 | 0.4344 | 0.8819 | 0.8840 | 0.8794 | 0.8772 |
69
+ | 0.2892 | 8.0 | 594 | 0.3911 | 0.8859 | 0.8879 | 0.8839 | 0.8804 |
70
+ | 0.2082 | 9.0 | 668 | 0.3256 | 0.9079 | 0.9067 | 0.9091 | 0.9053 |
71
+ | 0.1737 | 9.97 | 740 | 0.2953 | 0.9179 | 0.9143 | 0.9169 | 0.9135 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.33.3
77
+ - Pytorch 2.0.1+cu117
78
+ - Datasets 2.14.5
79
+ - Tokenizers 0.13.3