--- license: apache-2.0 base_model: facebook/convnextv2-base-22k-384 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: 10-convnextv2-base-22k-384-finetuned-spiderTraining50-200 results: [] --- # 10-convnextv2-base-22k-384-finetuned-spiderTraining50-200 This model is a fine-tuned version of [facebook/convnextv2-base-22k-384](https://huggingface.co/facebook/convnextv2-base-22k-384) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2953 - Accuracy: 0.9179 - Precision: 0.9143 - Recall: 0.9169 - F1: 0.9135 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 27 - eval_batch_size: 27 - seed: 42 - distributed_type: multi-GPU - gradient_accumulation_steps: 4 - total_train_batch_size: 108 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.2896 | 1.0 | 74 | 0.9797 | 0.7057 | 0.7360 | 0.7011 | 0.6843 | | 1.1398 | 1.99 | 148 | 0.9558 | 0.7227 | 0.7691 | 0.7254 | 0.7197 | | 0.7899 | 2.99 | 222 | 0.6987 | 0.7948 | 0.8101 | 0.7890 | 0.7866 | | 0.5357 | 4.0 | 297 | 0.6526 | 0.8148 | 0.8327 | 0.8161 | 0.8104 | | 0.4807 | 5.0 | 371 | 0.5543 | 0.8398 | 0.8512 | 0.8407 | 0.8367 | | 0.3575 | 5.99 | 445 | 0.4465 | 0.8789 | 0.8814 | 0.8790 | 0.8746 | | 0.3728 | 6.99 | 519 | 0.4344 | 0.8819 | 0.8840 | 0.8794 | 0.8772 | | 0.2892 | 8.0 | 594 | 0.3911 | 0.8859 | 0.8879 | 0.8839 | 0.8804 | | 0.2082 | 9.0 | 668 | 0.3256 | 0.9079 | 0.9067 | 0.9091 | 0.9053 | | 0.1737 | 9.97 | 740 | 0.2953 | 0.9179 | 0.9143 | 0.9169 | 0.9135 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3