Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,80 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!-- # DepthMaster: Taming Diffusion Models for Monocular Depth Estimation
|
2 |
+
|
3 |
+
|
4 |
+
This repository represents the official implementation of the paper titled "DepthMaster: Taming Diffusion Models for Monocular Depth Estimation". -->
|
5 |
+
|
6 |
+
<!-- [![Website](doc/badges/badge-website.svg)](https://marigoldmonodepth.github.io)
|
7 |
+
[![Paper](https://img.shields.io/badge/arXiv-PDF-b31b1b)](https://arxiv.org/abs/2312.02145) -->
|
8 |
+
|
9 |
+
<!-- [![License](https://img.shields.io/badge/License-Apache--2.0-929292)](https://www.apache.org/licenses/LICENSE-2.0) -->
|
10 |
+
|
11 |
+
<h1 align="center"><strong>DepthMaster: Taming Diffusion Models for Monocular Depth Estimation</strong></h1>
|
12 |
+
<p align="center">
|
13 |
+
<a href="https://indu1ge.github.io/ziyangsong">Ziyang Song*</a>,
|
14 |
+
<a href="https://orcid.org/0009-0001-6677-0572">Zerong Wang*</a>,
|
15 |
+
<a href="https://orcid.org/0000-0001-7817-0665">Bo Li</a>,
|
16 |
+
<a href="https://orcid.org/0009-0007-1175-5918">Hao Zhang</a>,
|
17 |
+
<a href="https://ruijiezhu94.github.io/ruijiezhu/">Ruijie Zhu</a>,
|
18 |
+
<a href="https://orcid.org/0009-0004-3280-8490">Li Liu</a>,
|
19 |
+
<a href="https://pengtaojiang.github.io/">Peng-Tao Jiang†</a>,
|
20 |
+
<a href="http://staff.ustc.edu.cn/~tzzhang/">Tianzhu Zhang†</a>,
|
21 |
+
<br>
|
22 |
+
*Equal Contribution, †Corresponding Author
|
23 |
+
<br>
|
24 |
+
University of Science and Technology of China, vivo Mobile Communication Co., Ltd.
|
25 |
+
<br>
|
26 |
+
<b>Arxiv 2025</b>
|
27 |
+
</p>
|
28 |
+
<!-- [Ziyang Song*](https://indu1ge.github.io/ziyangsong),
|
29 |
+
[Zerong Wang*](),
|
30 |
+
[Bo Li](https://orcid.org/0000-0001-7817-0665),
|
31 |
+
[Hao Zhang](https://orcid.org/0009-0007-1175-5918),
|
32 |
+
[Ruijie Zhu](https://ruijiezhu94.github.io/ruijiezhu/),
|
33 |
+
[Li Liu](https://orcid.org/0009-0004-3280-8490)
|
34 |
+
[Tianzhu Zhang](http://staff.ustc.edu.cn/~tzzhang/)
|
35 |
+
[Peng-Tao Jiang](https://pengtaojiang.github.io/) -->
|
36 |
+
|
37 |
+
<div align="center">
|
38 |
+
<a href='https://arxiv.org/abs/2501.02576'><img src='https://img.shields.io/badge/Paper-arXiv-red'></a>
|
39 |
+
<!-- <a href='https://arxiv.org/abs/[]'><img src='https://img.shields.io/badge/arXiv-[]-b31b1b.svg'></a> -->
|
40 |
+
<a href='https://indu1ge.github.io/DepthMaster_page/'><img src='https://img.shields.io/badge/Project-Page-Green'></a>
|
41 |
+
<a href='https://github.com/indu1ge/DepthMaster'><img src='https://img.shields.io/badge/GitHub-Repository-blue?logo=github'></a>
|
42 |
+
<a href='https://www.apache.org/licenses/LICENSE-2.0'><img src='https://img.shields.io/badge/License-Apache--2.0-929292'></a>
|
43 |
+
<!-- <a href='https://paperswithcode.com/sota/unsupervised-monocular-depth-estimation-on-7?p=ec-depth-exploring-the-consistency-of-self'><img src='https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/ec-depth-exploring-the-consistency-of-self/unsupervised-monocular-depth-estimation-on-7'></a> -->
|
44 |
+
</div>
|
45 |
+
|
46 |
+
|
47 |
+
<!-- We present Marigold, a diffusion model, and associated fine-tuning protocol for monocular depth estimation. Its core principle is to leverage the rich visual knowledge stored in modern generative image models. Our model, derived from Stable Diffusion and fine-tuned with synthetic data, can zero-shot transfer to unseen data, offering state-of-the-art monocular depth estimation results. -->
|
48 |
+
|
49 |
+
|
50 |
+
![teaser](assets/framework.png)
|
51 |
+
|
52 |
+
<!-- >We present DepthMaster, a tamed single-step diffusion model designed to enhance the generalization and detail preservation abilities of depth estimation models. Through feature alignment, we effectively prevent the overfitting to texture details. By adaptively enhance -->
|
53 |
+
>We present DepthMaster, a tamed single-step diffusion model that customizes generative features in diffusion models to suit the discriminative depth estimation task. We introduce a Feature Alignment module to mitigate overfitting to texture and a Fourier Enhancement module to refine fine-grained details. DepthMaster exhibits state-of-the-art zero-shot performance and superior detail preservation ability, surpassing
|
54 |
+
other diffusion-based methods across various datasets.
|
55 |
+
|
56 |
+
|
57 |
+
## 🎓 Citation
|
58 |
+
|
59 |
+
Please cite our paper:
|
60 |
+
|
61 |
+
```bibtex
|
62 |
+
@article{song2025depthmaster,
|
63 |
+
title={DepthMaster: Taming Diffusion Models for Monocular Depth Estimation},
|
64 |
+
author={Song, Ziyang and Wang, Zerong and Li, Bo and Zhang, Hao and Zhu, Ruijie and Liu, Li and Jiang, Peng-Tao and Zhang, Tianzhu},
|
65 |
+
journal={arXiv preprint arXiv:2501.02576},
|
66 |
+
year={2025}
|
67 |
+
}
|
68 |
+
```
|
69 |
+
|
70 |
+
## Acknowledgements
|
71 |
+
|
72 |
+
The code is based on [Marigold](https://github.com/prs-eth/Marigold).
|
73 |
+
|
74 |
+
## 🎫 License
|
75 |
+
|
76 |
+
This work is licensed under the Apache License, Version 2.0 (as defined in the [LICENSE](LICENSE.txt)).
|
77 |
+
|
78 |
+
By downloading and using the code and model you agree to the terms in the [LICENSsE](LICENSE.txt).
|
79 |
+
|
80 |
+
[![License](https://img.shields.io/badge/License-Apache--2.0-929292)](https://www.apache.org/licenses/LICENSE-2.0)
|