Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
<!-- # DepthMaster: Taming Diffusion Models for Monocular Depth Estimation
|
2 |
|
3 |
|
@@ -34,16 +42,25 @@ This repository represents the official implementation of the paper titled "Dept
|
|
34 |
[Tianzhu Zhang](http://staff.ustc.edu.cn/~tzzhang/)
|
35 |
[Peng-Tao Jiang](https://pengtaojiang.github.io/) -->
|
36 |
|
|
|
|
|
37 |
<div align="center">
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
</div>
|
45 |
|
46 |
|
|
|
47 |
<!-- We present Marigold, a diffusion model, and associated fine-tuning protocol for monocular depth estimation. Its core principle is to leverage the rich visual knowledge stored in modern generative image models. Our model, derived from Stable Diffusion and fine-tuned with synthetic data, can zero-shot transfer to unseen data, offering state-of-the-art monocular depth estimation results. -->
|
48 |
|
49 |
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- stabilityai/stable-diffusion-2
|
7 |
+
pipeline_tag: depth-estimation
|
8 |
+
---
|
9 |
<!-- # DepthMaster: Taming Diffusion Models for Monocular Depth Estimation
|
10 |
|
11 |
|
|
|
42 |
[Tianzhu Zhang](http://staff.ustc.edu.cn/~tzzhang/)
|
43 |
[Peng-Tao Jiang](https://pengtaojiang.github.io/) -->
|
44 |
|
45 |
+
|
46 |
+
|
47 |
<div align="center">
|
48 |
+
<a href='https://arxiv.org/abs/2501.02576'>
|
49 |
+
<img src='https://img.shields.io/badge/Paper-arXiv-red'>
|
50 |
+
</a>
|
51 |
+
<a href='https://indu1ge.github.io/DepthMaster_page/'>
|
52 |
+
<img src='https://img.shields.io/badge/Project-Page-Green'>
|
53 |
+
</a>
|
54 |
+
<a href='https://github.com/indu1ge/DepthMaster'>
|
55 |
+
<img src='https://img.shields.io/badge/GitHub-Repository-blue?logo=github'>
|
56 |
+
</a>
|
57 |
+
<a href='https://www.apache.org/licenses/LICENSE-2.0'>
|
58 |
+
<img src='https://img.shields.io/badge/License-Apache--2.0-929292'>
|
59 |
+
</a>
|
60 |
</div>
|
61 |
|
62 |
|
63 |
+
|
64 |
<!-- We present Marigold, a diffusion model, and associated fine-tuning protocol for monocular depth estimation. Its core principle is to leverage the rich visual knowledge stored in modern generative image models. Our model, derived from Stable Diffusion and fine-tuned with synthetic data, can zero-shot transfer to unseen data, offering state-of-the-art monocular depth estimation results. -->
|
65 |
|
66 |
|