|
--- |
|
tags: |
|
- timm |
|
- feature-extraction |
|
- image-classification |
|
library_name: timm |
|
license: apache-2.0 |
|
--- |
|
|
|
# Model card for vit_base_patch14_224.dinobloom |
|
|
|
![](https://github.com/marrlab/DinoBloom/blob/9ea2f950e1f016cd7f899b3ed025d12b6a355d9f/media/overview.png?raw=true) |
|
|
|
## Model Details |
|
|
|
- **Model Type:** Feature backbone |
|
- **Model Stats:** |
|
- Params: 86M (base) |
|
- Image size: 224 x 224 x 3 |
|
- Patch size: 14 x 14 x 3 |
|
- **Repository:** [github.com:marrlab/DinoBloom](https://github.com/marrlab/DinoBloom) |
|
- **Original Weights:** [Zenodo](https://zenodo.org/records/10908163) |
|
- **License:** [Apache License 2.0](https://github.com/marrlab/DinoBloom/blob/main/LICENSE) |
|
- **Papers:** |
|
- [DinoBloom: A Foundation Model for Generalizable Cell Embeddings in Hematology](https://arxiv.org/abs/2404.05022) |
|
|
|
## Model Usage |
|
|
|
### Image Embeddings |
|
|
|
```python |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
import timm |
|
|
|
# get example histology image |
|
img = Image.open( |
|
urlopen( |
|
"https://raw.githubusercontent.com/zxaoyou/segmentation_WBC/master/Dataset%201/001.bmp" |
|
) |
|
) |
|
|
|
# load model from the hub |
|
model = timm.create_model( |
|
model_name="hf-hub:1aurent/vit_base_patch14_224.dinobloom", |
|
pretrained=True, |
|
).eval() |
|
|
|
# get model specific transforms (normalization, resize) |
|
data_config = timm.data.resolve_model_data_config(model) |
|
transforms = timm.data.create_transform(**data_config, is_training=False) |
|
|
|
data = transforms(img).unsqueeze(0) # input is a (batch_size, num_channels, img_size, img_size) shaped tensor |
|
output = model(data) # output is a (batch_size, num_features) shaped tensor |
|
``` |
|
|
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{koch2024dinobloom, |
|
title = {DinoBloom: A Foundation Model for Generalizable Cell Embeddings in Hematology}, |
|
author = {Valentin Koch and Sophia J. Wagner and Salome Kazeminia and Ece Sancar and Matthias Hehr and Julia Schnabel and Tingying Peng and Carsten Marr}, |
|
year = {2024}, |
|
eprint = {2404.05022}, |
|
archivePrefix = {arXiv}, |
|
primaryClass = {cs.CV} |
|
} |
|
``` |