Model Card for Model ID

SAVETENSORS VERSION >>> https://civitai.com/models/130664

Model Details

Model Description

This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: Abdallah Alswaiti
  • Model type: SDXL

Uses

Using with Diffusers for low GPU

🧨 Diffusers

Make sure to upgrade diffusers to >= 0.28.0:

pip install -U diffusers --upgrade

In addition make sure to install transformers, safetensors, sentencepiece,gc and accelerate:

pip install transformers accelerate safetensors sentencepiece gc
import torch
from diffusers import StableDiffusionXLPipeline
import gc
from transformers import CLIPTokenizer, CLIPTextModel, CLIPTextModelWithProjection
# from onediffx import compile_pipe, save_pipe, load_pipe
from PIL import Image

def encode_prompt(prompts, tokenizers, text_encoders):
    embeddings_list = []
    for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
        cond_input = tokenizer(
            prompt,
            max_length=tokenizer.model_max_length,
            padding='max_length',
            truncation=True,
            return_tensors='pt',
        )
        prompt_embeds = text_encoder(cond_input.input_ids.to('cuda'), output_hidden_states=True)
        pooled_prompt_embeds = prompt_embeds[0]
        embeddings_list.append(prompt_embeds.hidden_states[-2])
    prompt_embeds = torch.concat(embeddings_list, dim=-1)
    negative_prompt_embeds = torch.zeros_like(prompt_embeds)
    negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
    bs_embed, seq_len, _ = prompt_embeds.shape
    prompt_embeds = prompt_embeds.repeat(1, 1, 1).view(bs_embed * 1, seq_len, -1)
    seq_len = negative_prompt_embeds.shape[1]
    negative_prompt_embeds = negative_prompt_embeds.repeat(1, 1, 1).view(1 * 1, seq_len, -1)
    pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1)
    negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, 1).view(bs_embed * 1, -1)
    return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

def get_user_input():
    prompt = input("Enter prompt: ") or '3/4 shot, candid photograph of a beautiful 30 year old redhead woman with messy dark hair, peacefully sleeping in her bed, night, dark, light from window, dark shadows, masterpiece, uhd, moody'
    negative_prompt = input("Enter negative prompt: ") or ""
    cfg_scale = float(input("Enter CFG scale (default 7.5): ") or 7.5)
    steps = int(input("Enter number of steps (default 50): ") or 50)
    width = int(input("Enter image width (default 512): ") or 512)
    height = int(input("Enter image height (default 512): ") or 512)
    seed = int(input("Enter seed (default 42): ") or 42)
    return prompt, negative_prompt, cfg_scale, steps, width, height, seed

pipe = StableDiffusionXLPipeline.from_pretrained('ABDALLALSWAITI/DAVINCI-DIFF', use_safetensors=True, torch_dtype=torch.float16, tokenizer=None, text_encoder=None, tokenizer_2=None, text_encoder_2=None).to('cuda')
# pipe = compile_pipe(pipe)
# load_pipe(pipe, dir="cached_pipe")



while True:
    queue = []
    prompt, negative_prompt, cfg_scale, steps, width, height, seed = get_user_input()
    queue.append({
        'prompt': prompt,
        'negative_prompt': negative_prompt,
        'cfg_scale': cfg_scale,
        'steps': steps,
        'width': width,
        'height': height,
        'seed': seed,
    })

    tokenizer = CLIPTokenizer.from_pretrained('ABDALLALSWAITI/DAVINCI-DIFF', subfolder='tokenizer')
    text_encoder = CLIPTextModel.from_pretrained('ABDALLALSWAITI/DAVINCI-DIFF', subfolder='text_encoder', use_safetensors=True, torch_dtype=torch.float16).to('cuda')
    tokenizer_2 = CLIPTokenizer.from_pretrained('ABDALLALSWAITI/DAVINCI-DIFF', subfolder='tokenizer_2')
    text_encoder_2 = CLIPTextModelWithProjection.from_pretrained('ABDALLALSWAITI/DAVINCI-DIFF', subfolder='text_encoder_2', use_safetensors=True, torch_dtype=torch.float16).to('cuda')

    with torch.no_grad():
        for generation in queue:
            generation['embeddings'] = encode_prompt(
                [generation['prompt'], generation['prompt']],
                [tokenizer, tokenizer_2],
                [text_encoder, text_encoder_2],
            )
    del tokenizer, text_encoder, tokenizer_2, text_encoder_2
    gc.collect()
    torch.cuda.empty_cache()

    generator = torch.Generator(device='cuda')
    for i, generation in enumerate(queue, start=1):
        generator.manual_seed(generation['seed'])
        generation['latents'] = pipe(
            prompt_embeds=generation['embeddings'][0],
            negative_prompt_embeds=generation['embeddings'][1],
            pooled_prompt_embeds=generation['embeddings'][2],
            negative_pooled_prompt_embeds=generation['embeddings'][3],
            generator=generator,
            output_type='latent',
            guidance_scale=generation['cfg_scale'],
            num_inference_steps=generation['steps'],
            height=generation['height'],
            width=generation['width']
        ).images


    del pipe.unet
    gc.collect()
    torch.cuda.empty_cache()
    
    # load_pipe(pipe, dir="cached_pipe")


    pipe.upcast_vae()
    with torch.no_grad():
        for i, generation in enumerate(queue, start=1):
            generation['latents'] = generation['latents'].to(next(iter(pipe.vae.post_quant_conv.parameters())).dtype)
            image = pipe.vae.decode(generation['latents'] / pipe.vae.config.scaling_factor, return_dict=False)[0]
            image = pipe.image_processor.postprocess(image, output_type='pil')[0]
            image_path = f'image_{i}.png'
            image.save(image_path)
            print(f"Image saved at: {image_path}")
        # save_pipe(pipe, dir="cached_pipe")



    if input("Do you want to create another image? (y/n): ").lower() != 'y':
        break
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using ABDALLALSWAITI/DAVINCI-DIFF 1