8b version of our ChemVLM
Citation
arxiv.org/abs/2408.07246
@misc{li2024chemvlmexploringpowermultimodal,
title={ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area},
author={Junxian Li and Di Zhang and Xunzhi Wang and Zeying Hao and Jingdi Lei and Qian Tan and Cai Zhou and Wei Liu and Yaotian Yang and Xinrui Xiong and Weiyun Wang and Zhe Chen and Wenhai Wang and Wei Li and Shufei Zhang and Mao Su and Wanli Ouyang and Yuqiang Li and Dongzhan Zhou},
year={2024},
eprint={2408.07246},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2408.07246},
}
Codebase and datasets can be found at https://github.com/AI4Chem/ChemVlm.
Performances of our 8b model on several tasks
Datasets | MMChemOCR | CMMU | MMCR-bench | Reaction type |
---|---|---|---|---|
metrics | tanimoto similarity\[email protected] | score(%, GPT-4o helps judge) | score(%, GPT-4o helps judge) | Accuracy(%) |
scores of ChemVLM-8b | 81.75/57.69 | 52.7(SOTA) | 33.6 | 16.79 |
Quick start as below(transformers>=4.37.0 is needed
)
Update: You may also need
pip install sentencepiece
pip install einops
pip install timm
pip install accelerate>=0.26.0
Code:
from transformers import AutoTokenizer, AutoModelforCasualLM
import torch
import torchvision.transforms as T
import transformers
from torchvision.transforms.functional import InterpolationMode
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)
def build_transform(input_size):
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
transform = T.Compose([
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
T.ToTensor(),
T.Normalize(mean=MEAN, std=STD)
])
return transform
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
best_ratio_diff = float('inf')
best_ratio = (1, 1)
area = width * height
for ratio in target_ratios:
target_aspect_ratio = ratio[0] / ratio[1]
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
if ratio_diff < best_ratio_diff:
best_ratio_diff = ratio_diff
best_ratio = ratio
elif ratio_diff == best_ratio_diff:
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
best_ratio = ratio
return best_ratio
def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
orig_width, orig_height = image.size
aspect_ratio = orig_width / orig_height
# calculate the existing image aspect ratio
target_ratios = set(
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
i * j <= max_num and i * j >= min_num)
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
# find the closest aspect ratio to the target
target_aspect_ratio = find_closest_aspect_ratio(
aspect_ratio, target_ratios, orig_width, orig_height, image_size)
# calculate the target width and height
target_width = image_size * target_aspect_ratio[0]
target_height = image_size * target_aspect_ratio[1]
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
return processed_images
def load_image(image_file, input_size=448, max_num=6):
image = Image.open(image_file).convert('RGB')
transform = build_transform(input_size=input_size)
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
pixel_values = [transform(image) for image in images]
pixel_values = torch.stack(pixel_values)
return pixel_values
tokenizer = AutoTokenizer.from_pretrained('AI4Chem/ChemVLM-8B', trust_remote_code=True)
query = "Please describe the molecule in the image."
image_path = "your image path"
pixel_values = load_image(image_path, max_num=6).to(torch.bfloat16).cuda()
model = AutoModelForCausalLM.from_pretrained(
"AI4Chem/ChemVLM-8B",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval().cuda()
gen_kwargs = {"max_length": 1000, "do_sample": True, "temperature": 0.7, "top_p": 0.9}
response = model.chat(tokenizer, pixel_values, query, gen_kwargs)
- Downloads last month
- 33