8b version of our ChemVLM

Citation

arxiv.org/abs/2408.07246

@misc{li2024chemvlmexploringpowermultimodal,
      title={ChemVLM: Exploring the Power of Multimodal Large Language Models in Chemistry Area}, 
      author={Junxian Li and Di Zhang and Xunzhi Wang and Zeying Hao and Jingdi Lei and Qian Tan and Cai Zhou and Wei Liu and Yaotian Yang and Xinrui Xiong and Weiyun Wang and Zhe Chen and Wenhai Wang and Wei Li and Shufei Zhang and Mao Su and Wanli Ouyang and Yuqiang Li and Dongzhan Zhou},
      year={2024},
      eprint={2408.07246},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2408.07246}, 
}

Codebase and datasets can be found at https://github.com/AI4Chem/ChemVlm.

Performances of our 8b model on several tasks

Datasets MMChemOCR CMMU MMCR-bench Reaction type
metrics tanimoto similarity\[email protected] score(%, GPT-4o helps judge) score(%, GPT-4o helps judge) Accuracy(%)
scores of ChemVLM-8b 81.75/57.69 52.7(SOTA) 33.6 16.79

Quick start as below(transformers>=4.37.0 is needed)
Update: You may also need

pip install sentencepiece  
pip install einops  
pip install timm  
pip install accelerate>=0.26.0  

Code:

from transformers import AutoTokenizer, AutoModelforCasualLM
import torch
import torchvision.transforms as T
import transformers
from torchvision.transforms.functional import InterpolationMode


IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)

IMAGENET_MEAN = (0.485, 0.456, 0.406)
IMAGENET_STD = (0.229, 0.224, 0.225)


def build_transform(input_size):
    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
    transform = T.Compose([
        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize(mean=MEAN, std=STD)
    ])
    return transform


def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float('inf')
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio


def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
        i * j <= max_num and i * j >= min_num)
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size)

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images


def load_image(image_file, input_size=448, max_num=6):
    image = Image.open(image_file).convert('RGB')
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

tokenizer = AutoTokenizer.from_pretrained('AI4Chem/ChemVLM-8B', trust_remote_code=True)

query = "Please describe the molecule in the image."
image_path = "your image path"
pixel_values = load_image(image_path, max_num=6).to(torch.bfloat16).cuda()


model = AutoModelForCausalLM.from_pretrained(
    "AI4Chem/ChemVLM-8B",
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True
).to(device).eval().cuda()

gen_kwargs = {"max_length": 1000, "do_sample": True, "temperature": 0.7, "top_p": 0.9}

response = model.chat(tokenizer, pixel_values, query, gen_kwargs)

Downloads last month
33
Safetensors
Model size
8.08B params
Tensor type
BF16
·
Inference Examples
Unable to determine this model's library. Check the docs .