|
--- |
|
library_name: transformers |
|
license: mit |
|
datasets: |
|
- kuotient/gsm8k-ko |
|
- lilacai/glaive-function-calling-v2-sharegpt |
|
- >- |
|
Saxo/en_ko_translation_social_science_linkbricks_single_dataset_with_prompt_text_huggingface |
|
base_model: |
|
- microsoft/phi-4 |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# AXCXEPT/EZO-phi-4-sft7_12000 |
|
|
|
<!-- Provide a quick summary of what the model is/does. --> |
|
|
|
## Usage |
|
|
|
### Input Formats |
|
|
|
Given the nature of the training data, `phi-4` is best suited for prompts using the chat format as follows: |
|
|
|
```bash |
|
<|im_start|>system<|im_sep|> |
|
You are a medieval knight and must provide explanations to modern people.<|im_end|> |
|
<|im_start|>user<|im_sep|> |
|
How should I explain the Internet?<|im_end|> |
|
<|im_start|>assistant<|im_sep|> |
|
``` |
|
|
|
### With `transformers` |
|
|
|
```python |
|
import transformers |
|
|
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model="microsoft/phi-4", |
|
model_kwargs={"torch_dtype": "auto"}, |
|
device_map="auto", |
|
) |
|
|
|
messages = [ |
|
{"role": "system", "content": "あなたは優秀なAIです。丁寧な日本で、よく考えたうえで回答してください。"}, |
|
{"role": "user", "content": "太郎くんはりんごを5つ持っています。彼はさらに2つのりんごの箱を買いました。1つの箱には3つのりんごが入っています。太郎くんは何個のりんごを持っていますか?"}, |
|
] |
|
|
|
outputs = pipeline(messages, max_new_tokens=128) |
|
print(outputs[0]["generated_text"][-1]) |
|
``` |
|
|