zyznull's picture
Update README.md
ad6c5b3 verified
metadata
license: apache-2.0
base_model:
  - Qwen/Qwen2-VL-2B-Instruct
language:
  - en
  - zh
tags:
  - mteb
  - sentence-transformers
  - transformers
  - Qwen2-VL
  - sentence-similarity
  - vidore
model-index:
  - name: external
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: b44c3b011063adb25877c13823db83bb193913c4
        metrics:
          - type: cos_sim_pearson
            value: 61.03190209456061
          - type: cos_sim_spearman
            value: 67.54853383020948
          - type: euclidean_pearson
            value: 65.38958681599493
          - type: euclidean_spearman
            value: 67.54853383020948
          - type: manhattan_pearson
            value: 65.25341659273157
          - type: manhattan_spearman
            value: 67.34190190683134
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865
        metrics:
          - type: cos_sim_pearson
            value: 50.83794357648487
          - type: cos_sim_spearman
            value: 54.03230997664373
          - type: euclidean_pearson
            value: 55.2072028123375
          - type: euclidean_spearman
            value: 54.032311102613264
          - type: manhattan_pearson
            value: 55.05163232251946
          - type: manhattan_spearman
            value: 53.81272176804127
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 72.55223880597015
          - type: ap
            value: 35.01515316721116
          - type: f1
            value: 66.44086070814382
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 96.75819999999999
          - type: ap
            value: 95.51009242092881
          - type: f1
            value: 96.75713119357414
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 61.971999999999994
          - type: f1
            value: 60.50745575187704
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 53.49
          - type: f1
            value: 51.576550662258434
      - task:
          type: Retrieval
        dataset:
          type: mteb/arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
        metrics:
          - type: map_at_1
            value: 36.272999999999996
          - type: map_at_10
            value: 52.782
          - type: map_at_100
            value: 53.339999999999996
          - type: map_at_1000
            value: 53.342999999999996
          - type: map_at_3
            value: 48.4
          - type: map_at_5
            value: 50.882000000000005
          - type: mrr_at_1
            value: 36.984
          - type: mrr_at_10
            value: 53.052
          - type: mrr_at_100
            value: 53.604
          - type: mrr_at_1000
            value: 53.607000000000006
          - type: mrr_at_3
            value: 48.613
          - type: mrr_at_5
            value: 51.159
          - type: ndcg_at_1
            value: 36.272999999999996
          - type: ndcg_at_10
            value: 61.524
          - type: ndcg_at_100
            value: 63.796
          - type: ndcg_at_1000
            value: 63.869
          - type: ndcg_at_3
            value: 52.456
          - type: ndcg_at_5
            value: 56.964000000000006
          - type: precision_at_1
            value: 36.272999999999996
          - type: precision_at_10
            value: 8.926
          - type: precision_at_100
            value: 0.989
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 21.407999999999998
          - type: precision_at_5
            value: 15.049999999999999
          - type: recall_at_1
            value: 36.272999999999996
          - type: recall_at_10
            value: 89.25999999999999
          - type: recall_at_100
            value: 98.933
          - type: recall_at_1000
            value: 99.502
          - type: recall_at_3
            value: 64.225
          - type: recall_at_5
            value: 75.249
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 52.45236368396085
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 46.83781937870832
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 60.653430349851746
          - type: mrr
            value: 74.28736314470387
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 89.18568151905953
          - type: cos_sim_spearman
            value: 86.47666922475281
          - type: euclidean_pearson
            value: 87.25416218056225
          - type: euclidean_spearman
            value: 86.47666922475281
          - type: manhattan_pearson
            value: 87.04960508086356
          - type: manhattan_spearman
            value: 86.73992823533615
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: e3dda5e115e487b39ec7e618c0c6a29137052a55
        metrics:
          - type: cos_sim_pearson
            value: 75.7464284612374
          - type: cos_sim_spearman
            value: 77.71894224189296
          - type: euclidean_pearson
            value: 77.63454068918787
          - type: euclidean_spearman
            value: 77.71894224189296
          - type: manhattan_pearson
            value: 77.58744810404339
          - type: manhattan_spearman
            value: 77.63293552726073
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 80.2435064935065
          - type: f1
            value: 79.44078343737895
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 44.68220155432257
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 40.666150477589284
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476
        metrics:
          - type: v_measure
            value: 44.23533333311907
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f
        metrics:
          - type: v_measure
            value: 43.01114481307774
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: 8d7f1e942507dac42dc58017c1a001c3717da7df
        metrics:
          - type: map
            value: 86.4349853821696
          - type: mrr
            value: 88.80150793650795
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: 23d186750531a14a0357ca22cd92d712fd512ea0
        metrics:
          - type: map
            value: 87.56417400982208
          - type: mrr
            value: 89.85813492063491
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: f46a197baaae43b4f621051089b82a364682dfeb
        metrics:
          - type: map_at_1
            value: 30.623
          - type: map_at_10
            value: 40.482
          - type: map_at_100
            value: 41.997
          - type: map_at_1000
            value: 42.135
          - type: map_at_3
            value: 37.754
          - type: map_at_5
            value: 39.031
          - type: mrr_at_1
            value: 37.482
          - type: mrr_at_10
            value: 46.311
          - type: mrr_at_100
            value: 47.211999999999996
          - type: mrr_at_1000
            value: 47.27
          - type: mrr_at_3
            value: 44.157999999999994
          - type: mrr_at_5
            value: 45.145
          - type: ndcg_at_1
            value: 37.482
          - type: ndcg_at_10
            value: 46.142
          - type: ndcg_at_100
            value: 51.834
          - type: ndcg_at_1000
            value: 54.164
          - type: ndcg_at_3
            value: 42.309000000000005
          - type: ndcg_at_5
            value: 43.485
          - type: precision_at_1
            value: 37.482
          - type: precision_at_10
            value: 8.455
          - type: precision_at_100
            value: 1.3780000000000001
          - type: precision_at_1000
            value: 0.188
          - type: precision_at_3
            value: 20.172
          - type: precision_at_5
            value: 13.705
          - type: recall_at_1
            value: 30.623
          - type: recall_at_10
            value: 56.77100000000001
          - type: recall_at_100
            value: 80.034
          - type: recall_at_1000
            value: 94.62899999999999
          - type: recall_at_3
            value: 44.663000000000004
          - type: recall_at_5
            value: 48.692
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
        metrics:
          - type: map_at_1
            value: 27.941
          - type: map_at_10
            value: 38.437
          - type: map_at_100
            value: 39.625
          - type: map_at_1000
            value: 39.753
          - type: map_at_3
            value: 35.388999999999996
          - type: map_at_5
            value: 37.113
          - type: mrr_at_1
            value: 34.522000000000006
          - type: mrr_at_10
            value: 43.864999999999995
          - type: mrr_at_100
            value: 44.533
          - type: mrr_at_1000
            value: 44.580999999999996
          - type: mrr_at_3
            value: 41.55
          - type: mrr_at_5
            value: 42.942
          - type: ndcg_at_1
            value: 34.522000000000006
          - type: ndcg_at_10
            value: 44.330000000000005
          - type: ndcg_at_100
            value: 48.61
          - type: ndcg_at_1000
            value: 50.712999999999994
          - type: ndcg_at_3
            value: 39.834
          - type: ndcg_at_5
            value: 42.016
          - type: precision_at_1
            value: 34.522000000000006
          - type: precision_at_10
            value: 8.471
          - type: precision_at_100
            value: 1.3379999999999999
          - type: precision_at_1000
            value: 0.182
          - type: precision_at_3
            value: 19.363
          - type: precision_at_5
            value: 13.898
          - type: recall_at_1
            value: 27.941
          - type: recall_at_10
            value: 55.336
          - type: recall_at_100
            value: 73.51100000000001
          - type: recall_at_1000
            value: 86.636
          - type: recall_at_3
            value: 42.54
          - type: recall_at_5
            value: 48.392
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: 4885aa143210c98657558c04aaf3dc47cfb54340
        metrics:
          - type: map_at_1
            value: 32.681
          - type: map_at_10
            value: 45.48
          - type: map_at_100
            value: 46.542
          - type: map_at_1000
            value: 46.604
          - type: map_at_3
            value: 42.076
          - type: map_at_5
            value: 44.076
          - type: mrr_at_1
            value: 37.492
          - type: mrr_at_10
            value: 48.746
          - type: mrr_at_100
            value: 49.485
          - type: mrr_at_1000
            value: 49.517
          - type: mrr_at_3
            value: 45.998
          - type: mrr_at_5
            value: 47.681000000000004
          - type: ndcg_at_1
            value: 37.492
          - type: ndcg_at_10
            value: 51.778999999999996
          - type: ndcg_at_100
            value: 56.294
          - type: ndcg_at_1000
            value: 57.58
          - type: ndcg_at_3
            value: 45.856
          - type: ndcg_at_5
            value: 48.968
          - type: precision_at_1
            value: 37.492
          - type: precision_at_10
            value: 8.620999999999999
          - type: precision_at_100
            value: 1.189
          - type: precision_at_1000
            value: 0.135
          - type: precision_at_3
            value: 20.773
          - type: precision_at_5
            value: 14.596
          - type: recall_at_1
            value: 32.681
          - type: recall_at_10
            value: 67.196
          - type: recall_at_100
            value: 87.027
          - type: recall_at_1000
            value: 96.146
          - type: recall_at_3
            value: 51.565000000000005
          - type: recall_at_5
            value: 59.123999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: 5003b3064772da1887988e05400cf3806fe491f2
        metrics:
          - type: map_at_1
            value: 22.421
          - type: map_at_10
            value: 30.127
          - type: map_at_100
            value: 31.253999999999998
          - type: map_at_1000
            value: 31.344
          - type: map_at_3
            value: 27.673
          - type: map_at_5
            value: 29.182000000000002
          - type: mrr_at_1
            value: 24.068
          - type: mrr_at_10
            value: 31.857000000000003
          - type: mrr_at_100
            value: 32.808
          - type: mrr_at_1000
            value: 32.881
          - type: mrr_at_3
            value: 29.397000000000002
          - type: mrr_at_5
            value: 30.883
          - type: ndcg_at_1
            value: 24.068
          - type: ndcg_at_10
            value: 34.642
          - type: ndcg_at_100
            value: 40.327
          - type: ndcg_at_1000
            value: 42.55
          - type: ndcg_at_3
            value: 29.868
          - type: ndcg_at_5
            value: 32.461
          - type: precision_at_1
            value: 24.068
          - type: precision_at_10
            value: 5.390000000000001
          - type: precision_at_100
            value: 0.873
          - type: precision_at_1000
            value: 0.109
          - type: precision_at_3
            value: 12.692999999999998
          - type: precision_at_5
            value: 9.107
          - type: recall_at_1
            value: 22.421
          - type: recall_at_10
            value: 46.846
          - type: recall_at_100
            value: 73.409
          - type: recall_at_1000
            value: 90.06
          - type: recall_at_3
            value: 34.198
          - type: recall_at_5
            value: 40.437
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: 90fceea13679c63fe563ded68f3b6f06e50061de
        metrics:
          - type: map_at_1
            value: 16.494
          - type: map_at_10
            value: 24.4
          - type: map_at_100
            value: 25.718999999999998
          - type: map_at_1000
            value: 25.840000000000003
          - type: map_at_3
            value: 21.731
          - type: map_at_5
            value: 23.247999999999998
          - type: mrr_at_1
            value: 20.274
          - type: mrr_at_10
            value: 28.866000000000003
          - type: mrr_at_100
            value: 29.889
          - type: mrr_at_1000
            value: 29.957
          - type: mrr_at_3
            value: 26.284999999999997
          - type: mrr_at_5
            value: 27.79
          - type: ndcg_at_1
            value: 20.274
          - type: ndcg_at_10
            value: 29.666999999999998
          - type: ndcg_at_100
            value: 36.095
          - type: ndcg_at_1000
            value: 38.87
          - type: ndcg_at_3
            value: 24.672
          - type: ndcg_at_5
            value: 27.106
          - type: precision_at_1
            value: 20.274
          - type: precision_at_10
            value: 5.5969999999999995
          - type: precision_at_100
            value: 1.04
          - type: precision_at_1000
            value: 0.14100000000000001
          - type: precision_at_3
            value: 12.023
          - type: precision_at_5
            value: 8.98
          - type: recall_at_1
            value: 16.494
          - type: recall_at_10
            value: 41.400999999999996
          - type: recall_at_100
            value: 69.811
          - type: recall_at_1000
            value: 89.422
          - type: recall_at_3
            value: 27.834999999999997
          - type: recall_at_5
            value: 33.774
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
        metrics:
          - type: map_at_1
            value: 26.150000000000002
          - type: map_at_10
            value: 36.012
          - type: map_at_100
            value: 37.377
          - type: map_at_1000
            value: 37.497
          - type: map_at_3
            value: 32.712
          - type: map_at_5
            value: 34.475
          - type: mrr_at_1
            value: 32.05
          - type: mrr_at_10
            value: 41.556
          - type: mrr_at_100
            value: 42.451
          - type: mrr_at_1000
            value: 42.498000000000005
          - type: mrr_at_3
            value: 38.659
          - type: mrr_at_5
            value: 40.314
          - type: ndcg_at_1
            value: 32.05
          - type: ndcg_at_10
            value: 42.132
          - type: ndcg_at_100
            value: 48.028999999999996
          - type: ndcg_at_1000
            value: 50.229
          - type: ndcg_at_3
            value: 36.622
          - type: ndcg_at_5
            value: 39.062000000000005
          - type: precision_at_1
            value: 32.05
          - type: precision_at_10
            value: 7.767
          - type: precision_at_100
            value: 1.269
          - type: precision_at_1000
            value: 0.164
          - type: precision_at_3
            value: 17.355999999999998
          - type: precision_at_5
            value: 12.474
          - type: recall_at_1
            value: 26.150000000000002
          - type: recall_at_10
            value: 55.205000000000005
          - type: recall_at_100
            value: 80.2
          - type: recall_at_1000
            value: 94.524
          - type: recall_at_3
            value: 39.322
          - type: recall_at_5
            value: 45.761
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
        metrics:
          - type: map_at_1
            value: 23.741
          - type: map_at_10
            value: 33.51
          - type: map_at_100
            value: 34.882999999999996
          - type: map_at_1000
            value: 34.995
          - type: map_at_3
            value: 30.514000000000003
          - type: map_at_5
            value: 32.085
          - type: mrr_at_1
            value: 28.653000000000002
          - type: mrr_at_10
            value: 38.059
          - type: mrr_at_100
            value: 39.050000000000004
          - type: mrr_at_1000
            value: 39.107
          - type: mrr_at_3
            value: 35.445
          - type: mrr_at_5
            value: 36.849
          - type: ndcg_at_1
            value: 28.653000000000002
          - type: ndcg_at_10
            value: 39.186
          - type: ndcg_at_100
            value: 45.301
          - type: ndcg_at_1000
            value: 47.547
          - type: ndcg_at_3
            value: 34.103
          - type: ndcg_at_5
            value: 36.239
          - type: precision_at_1
            value: 28.653000000000002
          - type: precision_at_10
            value: 7.295
          - type: precision_at_100
            value: 1.2189999999999999
          - type: precision_at_1000
            value: 0.159
          - type: precision_at_3
            value: 16.438
          - type: precision_at_5
            value: 11.804
          - type: recall_at_1
            value: 23.741
          - type: recall_at_10
            value: 51.675000000000004
          - type: recall_at_100
            value: 78.13799999999999
          - type: recall_at_1000
            value: 93.12700000000001
          - type: recall_at_3
            value: 37.033
          - type: recall_at_5
            value: 42.793
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 25.281666666666663
          - type: map_at_10
            value: 34.080666666666666
          - type: map_at_100
            value: 35.278749999999995
          - type: map_at_1000
            value: 35.40183333333333
          - type: map_at_3
            value: 31.45316666666667
          - type: map_at_5
            value: 32.92716666666667
          - type: mrr_at_1
            value: 29.78783333333333
          - type: mrr_at_10
            value: 38.077333333333335
          - type: mrr_at_100
            value: 38.936499999999995
          - type: mrr_at_1000
            value: 39.000249999999994
          - type: mrr_at_3
            value: 35.7735
          - type: mrr_at_5
            value: 37.07683333333334
          - type: ndcg_at_1
            value: 29.78783333333333
          - type: ndcg_at_10
            value: 39.18300000000001
          - type: ndcg_at_100
            value: 44.444750000000006
          - type: ndcg_at_1000
            value: 46.90316666666667
          - type: ndcg_at_3
            value: 34.69308333333333
          - type: ndcg_at_5
            value: 36.80316666666666
          - type: precision_at_1
            value: 29.78783333333333
          - type: precision_at_10
            value: 6.820749999999999
          - type: precision_at_100
            value: 1.1224166666666666
          - type: precision_at_1000
            value: 0.1525
          - type: precision_at_3
            value: 15.936333333333335
          - type: precision_at_5
            value: 11.282333333333334
          - type: recall_at_1
            value: 25.281666666666663
          - type: recall_at_10
            value: 50.282
          - type: recall_at_100
            value: 73.54558333333334
          - type: recall_at_1000
            value: 90.64241666666666
          - type: recall_at_3
            value: 37.800999999999995
          - type: recall_at_5
            value: 43.223000000000006
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
        metrics:
          - type: map_at_1
            value: 23.452
          - type: map_at_10
            value: 30.231
          - type: map_at_100
            value: 31.227
          - type: map_at_1000
            value: 31.338
          - type: map_at_3
            value: 28.083000000000002
          - type: map_at_5
            value: 29.125
          - type: mrr_at_1
            value: 25.613000000000003
          - type: mrr_at_10
            value: 32.62
          - type: mrr_at_100
            value: 33.469
          - type: mrr_at_1000
            value: 33.554
          - type: mrr_at_3
            value: 30.368000000000002
          - type: mrr_at_5
            value: 31.502999999999997
          - type: ndcg_at_1
            value: 25.613000000000003
          - type: ndcg_at_10
            value: 34.441
          - type: ndcg_at_100
            value: 39.253
          - type: ndcg_at_1000
            value: 42.105
          - type: ndcg_at_3
            value: 30.183
          - type: ndcg_at_5
            value: 31.917
          - type: precision_at_1
            value: 25.613000000000003
          - type: precision_at_10
            value: 5.367999999999999
          - type: precision_at_100
            value: 0.848
          - type: precision_at_1000
            value: 0.117
          - type: precision_at_3
            value: 12.73
          - type: precision_at_5
            value: 8.773
          - type: recall_at_1
            value: 23.452
          - type: recall_at_10
            value: 45.021
          - type: recall_at_100
            value: 66.563
          - type: recall_at_1000
            value: 87.713
          - type: recall_at_3
            value: 33.433
          - type: recall_at_5
            value: 37.637
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: 46989137a86843e03a6195de44b09deda022eec7
        metrics:
          - type: map_at_1
            value: 16.11
          - type: map_at_10
            value: 22.832
          - type: map_at_100
            value: 23.829
          - type: map_at_1000
            value: 23.959
          - type: map_at_3
            value: 20.66
          - type: map_at_5
            value: 21.851000000000003
          - type: mrr_at_1
            value: 19.408
          - type: mrr_at_10
            value: 26.354
          - type: mrr_at_100
            value: 27.237000000000002
          - type: mrr_at_1000
            value: 27.32
          - type: mrr_at_3
            value: 24.243000000000002
          - type: mrr_at_5
            value: 25.430000000000003
          - type: ndcg_at_1
            value: 19.408
          - type: ndcg_at_10
            value: 27.239
          - type: ndcg_at_100
            value: 32.286
          - type: ndcg_at_1000
            value: 35.498000000000005
          - type: ndcg_at_3
            value: 23.244
          - type: ndcg_at_5
            value: 25.080999999999996
          - type: precision_at_1
            value: 19.408
          - type: precision_at_10
            value: 4.917
          - type: precision_at_100
            value: 0.874
          - type: precision_at_1000
            value: 0.133
          - type: precision_at_3
            value: 10.863
          - type: precision_at_5
            value: 7.887
          - type: recall_at_1
            value: 16.11
          - type: recall_at_10
            value: 37.075
          - type: recall_at_100
            value: 60.251999999999995
          - type: recall_at_1000
            value: 83.38600000000001
          - type: recall_at_3
            value: 25.901999999999997
          - type: recall_at_5
            value: 30.612000000000002
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
        metrics:
          - type: map_at_1
            value: 25.941
          - type: map_at_10
            value: 33.711999999999996
          - type: map_at_100
            value: 34.926
          - type: map_at_1000
            value: 35.05
          - type: map_at_3
            value: 31.075000000000003
          - type: map_at_5
            value: 32.611000000000004
          - type: mrr_at_1
            value: 30.784
          - type: mrr_at_10
            value: 38.079
          - type: mrr_at_100
            value: 39.018
          - type: mrr_at_1000
            value: 39.09
          - type: mrr_at_3
            value: 35.603
          - type: mrr_at_5
            value: 36.988
          - type: ndcg_at_1
            value: 30.784
          - type: ndcg_at_10
            value: 38.586
          - type: ndcg_at_100
            value: 44.205
          - type: ndcg_at_1000
            value: 46.916000000000004
          - type: ndcg_at_3
            value: 33.899
          - type: ndcg_at_5
            value: 36.11
          - type: precision_at_1
            value: 30.784
          - type: precision_at_10
            value: 6.409
          - type: precision_at_100
            value: 1.034
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_3
            value: 15.112
          - type: precision_at_5
            value: 10.728
          - type: recall_at_1
            value: 25.941
          - type: recall_at_10
            value: 49.242999999999995
          - type: recall_at_100
            value: 73.85000000000001
          - type: recall_at_1000
            value: 92.782
          - type: recall_at_3
            value: 36.204
          - type: recall_at_5
            value: 41.908
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: 160c094312a0e1facb97e55eeddb698c0abe3571
        metrics:
          - type: map_at_1
            value: 24.401999999999997
          - type: map_at_10
            value: 33.195
          - type: map_at_100
            value: 34.699999999999996
          - type: map_at_1000
            value: 34.946
          - type: map_at_3
            value: 30.570999999999998
          - type: map_at_5
            value: 32
          - type: mrr_at_1
            value: 28.656
          - type: mrr_at_10
            value: 37.039
          - type: mrr_at_100
            value: 38.049
          - type: mrr_at_1000
            value: 38.108
          - type: mrr_at_3
            value: 34.717
          - type: mrr_at_5
            value: 36.07
          - type: ndcg_at_1
            value: 28.656
          - type: ndcg_at_10
            value: 38.557
          - type: ndcg_at_100
            value: 44.511
          - type: ndcg_at_1000
            value: 47.346
          - type: ndcg_at_3
            value: 34.235
          - type: ndcg_at_5
            value: 36.260999999999996
          - type: precision_at_1
            value: 28.656
          - type: precision_at_10
            value: 7.312
          - type: precision_at_100
            value: 1.451
          - type: precision_at_1000
            value: 0.242
          - type: precision_at_3
            value: 15.942
          - type: precision_at_5
            value: 11.66
          - type: recall_at_1
            value: 24.401999999999997
          - type: recall_at_10
            value: 48.791000000000004
          - type: recall_at_100
            value: 76.211
          - type: recall_at_1000
            value: 93.92
          - type: recall_at_3
            value: 36.975
          - type: recall_at_5
            value: 42.01
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
        metrics:
          - type: map_at_1
            value: 19.07
          - type: map_at_10
            value: 26.608999999999998
          - type: map_at_100
            value: 27.625
          - type: map_at_1000
            value: 27.743000000000002
          - type: map_at_3
            value: 24.532999999999998
          - type: map_at_5
            value: 25.671
          - type: mrr_at_1
            value: 20.518
          - type: mrr_at_10
            value: 28.541
          - type: mrr_at_100
            value: 29.453000000000003
          - type: mrr_at_1000
            value: 29.536
          - type: mrr_at_3
            value: 26.71
          - type: mrr_at_5
            value: 27.708
          - type: ndcg_at_1
            value: 20.518
          - type: ndcg_at_10
            value: 30.855
          - type: ndcg_at_100
            value: 35.973
          - type: ndcg_at_1000
            value: 38.827
          - type: ndcg_at_3
            value: 26.868
          - type: ndcg_at_5
            value: 28.74
          - type: precision_at_1
            value: 20.518
          - type: precision_at_10
            value: 4.843
          - type: precision_at_100
            value: 0.799
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 11.645
          - type: precision_at_5
            value: 8.133
          - type: recall_at_1
            value: 19.07
          - type: recall_at_10
            value: 41.925000000000004
          - type: recall_at_100
            value: 65.68
          - type: recall_at_1000
            value: 86.713
          - type: recall_at_3
            value: 31.251
          - type: recall_at_5
            value: 35.653
      - task:
          type: Retrieval
        dataset:
          type: mteb/climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
        metrics:
          - type: map_at_1
            value: 18.762
          - type: map_at_10
            value: 32.412
          - type: map_at_100
            value: 34.506
          - type: map_at_1000
            value: 34.678
          - type: map_at_3
            value: 27.594
          - type: map_at_5
            value: 30.128
          - type: mrr_at_1
            value: 42.345
          - type: mrr_at_10
            value: 54.443
          - type: mrr_at_100
            value: 55.05799999999999
          - type: mrr_at_1000
            value: 55.076
          - type: mrr_at_3
            value: 51.553000000000004
          - type: mrr_at_5
            value: 53.269
          - type: ndcg_at_1
            value: 42.345
          - type: ndcg_at_10
            value: 42.304
          - type: ndcg_at_100
            value: 49.425000000000004
          - type: ndcg_at_1000
            value: 52.123
          - type: ndcg_at_3
            value: 36.271
          - type: ndcg_at_5
            value: 38.216
          - type: precision_at_1
            value: 42.345
          - type: precision_at_10
            value: 12.808
          - type: precision_at_100
            value: 2.062
          - type: precision_at_1000
            value: 0.258
          - type: precision_at_3
            value: 26.840000000000003
          - type: precision_at_5
            value: 20.052
          - type: recall_at_1
            value: 18.762
          - type: recall_at_10
            value: 47.976
          - type: recall_at_100
            value: 71.86
          - type: recall_at_1000
            value: 86.61999999999999
          - type: recall_at_3
            value: 32.708999999999996
          - type: recall_at_5
            value: 39.151
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301
        metrics:
          - type: map_at_1
            value: 24.871
          - type: map_at_10
            value: 37.208999999999996
          - type: map_at_100
            value: 38.993
          - type: map_at_1000
            value: 39.122
          - type: map_at_3
            value: 33.2
          - type: map_at_5
            value: 35.33
          - type: mrr_at_1
            value: 37.884
          - type: mrr_at_10
            value: 46.189
          - type: mrr_at_100
            value: 47.147
          - type: mrr_at_1000
            value: 47.195
          - type: mrr_at_3
            value: 43.728
          - type: mrr_at_5
            value: 44.994
          - type: ndcg_at_1
            value: 37.884
          - type: ndcg_at_10
            value: 43.878
          - type: ndcg_at_100
            value: 51.002
          - type: ndcg_at_1000
            value: 53.161
          - type: ndcg_at_3
            value: 38.729
          - type: ndcg_at_5
            value: 40.628
          - type: precision_at_1
            value: 37.884
          - type: precision_at_10
            value: 9.75
          - type: precision_at_100
            value: 1.558
          - type: precision_at_1000
            value: 0.183
          - type: precision_at_3
            value: 21.964
          - type: precision_at_5
            value: 15.719
          - type: recall_at_1
            value: 24.871
          - type: recall_at_10
            value: 54.615
          - type: recall_at_100
            value: 84.276
          - type: recall_at_1000
            value: 98.578
          - type: recall_at_3
            value: 38.936
          - type: recall_at_5
            value: 45.061
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: 41bc36f332156f7adc9e38f53777c959b2ae9766
        metrics:
          - type: cos_sim_accuracy
            value: 76.12748045700542
          - type: cos_sim_ap
            value: 84.47948419710998
          - type: cos_sim_f1
            value: 77.88108108108108
          - type: cos_sim_precision
            value: 72.43112809169516
          - type: cos_sim_recall
            value: 84.21790974982464
          - type: dot_accuracy
            value: 76.12748045700542
          - type: dot_ap
            value: 84.4933237839786
          - type: dot_f1
            value: 77.88108108108108
          - type: dot_precision
            value: 72.43112809169516
          - type: dot_recall
            value: 84.21790974982464
          - type: euclidean_accuracy
            value: 76.12748045700542
          - type: euclidean_ap
            value: 84.47947997540409
          - type: euclidean_f1
            value: 77.88108108108108
          - type: euclidean_precision
            value: 72.43112809169516
          - type: euclidean_recall
            value: 84.21790974982464
          - type: manhattan_accuracy
            value: 75.40589296452195
          - type: manhattan_ap
            value: 83.74383956930585
          - type: manhattan_f1
            value: 77.0983342289092
          - type: manhattan_precision
            value: 71.34049323786795
          - type: manhattan_recall
            value: 83.86719663315408
          - type: max_accuracy
            value: 76.12748045700542
          - type: max_ap
            value: 84.4933237839786
          - type: max_f1
            value: 77.88108108108108
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: 1271c7809071a13532e05f25fb53511ffce77117
        metrics:
          - type: map_at_1
            value: 66.781
          - type: map_at_10
            value: 74.539
          - type: map_at_100
            value: 74.914
          - type: map_at_1000
            value: 74.921
          - type: map_at_3
            value: 72.734
          - type: map_at_5
            value: 73.788
          - type: mrr_at_1
            value: 66.913
          - type: mrr_at_10
            value: 74.543
          - type: mrr_at_100
            value: 74.914
          - type: mrr_at_1000
            value: 74.921
          - type: mrr_at_3
            value: 72.831
          - type: mrr_at_5
            value: 73.76899999999999
          - type: ndcg_at_1
            value: 67.018
          - type: ndcg_at_10
            value: 78.34299999999999
          - type: ndcg_at_100
            value: 80.138
          - type: ndcg_at_1000
            value: 80.322
          - type: ndcg_at_3
            value: 74.667
          - type: ndcg_at_5
            value: 76.518
          - type: precision_at_1
            value: 67.018
          - type: precision_at_10
            value: 9.115
          - type: precision_at_100
            value: 0.996
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 26.906000000000002
          - type: precision_at_5
            value: 17.092
          - type: recall_at_1
            value: 66.781
          - type: recall_at_10
            value: 90.253
          - type: recall_at_100
            value: 98.52499999999999
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 80.05799999999999
          - type: recall_at_5
            value: 84.615
      - task:
          type: Retrieval
        dataset:
          type: mteb/dbpedia
          name: MTEB DBPedia
          config: default
          split: test
          revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
        metrics:
          - type: map_at_1
            value: 9.685
          - type: map_at_10
            value: 21.65
          - type: map_at_100
            value: 30.952
          - type: map_at_1000
            value: 33.049
          - type: map_at_3
            value: 14.953
          - type: map_at_5
            value: 17.592
          - type: mrr_at_1
            value: 72
          - type: mrr_at_10
            value: 78.054
          - type: mrr_at_100
            value: 78.41900000000001
          - type: mrr_at_1000
            value: 78.425
          - type: mrr_at_3
            value: 76.5
          - type: mrr_at_5
            value: 77.28699999999999
          - type: ndcg_at_1
            value: 61.25000000000001
          - type: ndcg_at_10
            value: 46.306000000000004
          - type: ndcg_at_100
            value: 50.867
          - type: ndcg_at_1000
            value: 58.533
          - type: ndcg_at_3
            value: 50.857
          - type: ndcg_at_5
            value: 48.283
          - type: precision_at_1
            value: 72
          - type: precision_at_10
            value: 37.3
          - type: precision_at_100
            value: 11.95
          - type: precision_at_1000
            value: 2.528
          - type: precision_at_3
            value: 53.583000000000006
          - type: precision_at_5
            value: 46.6
          - type: recall_at_1
            value: 9.685
          - type: recall_at_10
            value: 27.474999999999998
          - type: recall_at_100
            value: 56.825
          - type: recall_at_1000
            value: 81.792
          - type: recall_at_3
            value: 15.939
          - type: recall_at_5
            value: 19.853
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: a1a333e290fe30b10f3f56498e3a0d911a693ced
        metrics:
          - type: map_at_1
            value: 24.528
          - type: map_at_10
            value: 76.304
          - type: map_at_100
            value: 79.327
          - type: map_at_1000
            value: 79.373
          - type: map_at_3
            value: 52.035
          - type: map_at_5
            value: 66.074
          - type: mrr_at_1
            value: 86.05000000000001
          - type: mrr_at_10
            value: 90.74
          - type: mrr_at_100
            value: 90.809
          - type: mrr_at_1000
            value: 90.81099999999999
          - type: mrr_at_3
            value: 90.30799999999999
          - type: mrr_at_5
            value: 90.601
          - type: ndcg_at_1
            value: 86.05000000000001
          - type: ndcg_at_10
            value: 84.518
          - type: ndcg_at_100
            value: 87.779
          - type: ndcg_at_1000
            value: 88.184
          - type: ndcg_at_3
            value: 82.339
          - type: ndcg_at_5
            value: 81.613
          - type: precision_at_1
            value: 86.05000000000001
          - type: precision_at_10
            value: 40.945
          - type: precision_at_100
            value: 4.787
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 74.117
          - type: precision_at_5
            value: 62.86000000000001
          - type: recall_at_1
            value: 24.528
          - type: recall_at_10
            value: 86.78
          - type: recall_at_100
            value: 97.198
          - type: recall_at_1000
            value: 99.227
          - type: recall_at_3
            value: 54.94799999999999
          - type: recall_at_5
            value: 72.053
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9
        metrics:
          - type: map_at_1
            value: 52.1
          - type: map_at_10
            value: 62.502
          - type: map_at_100
            value: 63.026
          - type: map_at_1000
            value: 63.04
          - type: map_at_3
            value: 59.782999999999994
          - type: map_at_5
            value: 61.443000000000005
          - type: mrr_at_1
            value: 52.1
          - type: mrr_at_10
            value: 62.502
          - type: mrr_at_100
            value: 63.026
          - type: mrr_at_1000
            value: 63.04
          - type: mrr_at_3
            value: 59.782999999999994
          - type: mrr_at_5
            value: 61.443000000000005
          - type: ndcg_at_1
            value: 52.1
          - type: ndcg_at_10
            value: 67.75999999999999
          - type: ndcg_at_100
            value: 70.072
          - type: ndcg_at_1000
            value: 70.441
          - type: ndcg_at_3
            value: 62.28
          - type: ndcg_at_5
            value: 65.25800000000001
          - type: precision_at_1
            value: 52.1
          - type: precision_at_10
            value: 8.43
          - type: precision_at_100
            value: 0.946
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 23.166999999999998
          - type: precision_at_5
            value: 15.340000000000002
          - type: recall_at_1
            value: 52.1
          - type: recall_at_10
            value: 84.3
          - type: recall_at_100
            value: 94.6
          - type: recall_at_1000
            value: 97.5
          - type: recall_at_3
            value: 69.5
          - type: recall_at_5
            value: 76.7
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 62.805000000000014
          - type: f1
            value: 56.401757250989384
      - task:
          type: Retrieval
        dataset:
          type: mteb/fever
          name: MTEB FEVER
          config: default
          split: test
          revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
        metrics:
          - type: map_at_1
            value: 83.734
          - type: map_at_10
            value: 90.089
          - type: map_at_100
            value: 90.274
          - type: map_at_1000
            value: 90.286
          - type: map_at_3
            value: 89.281
          - type: map_at_5
            value: 89.774
          - type: mrr_at_1
            value: 90.039
          - type: mrr_at_10
            value: 94.218
          - type: mrr_at_100
            value: 94.24
          - type: mrr_at_1000
            value: 94.24
          - type: mrr_at_3
            value: 93.979
          - type: mrr_at_5
            value: 94.137
          - type: ndcg_at_1
            value: 90.039
          - type: ndcg_at_10
            value: 92.597
          - type: ndcg_at_100
            value: 93.147
          - type: ndcg_at_1000
            value: 93.325
          - type: ndcg_at_3
            value: 91.64999999999999
          - type: ndcg_at_5
            value: 92.137
          - type: precision_at_1
            value: 90.039
          - type: precision_at_10
            value: 10.809000000000001
          - type: precision_at_100
            value: 1.133
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 34.338
          - type: precision_at_5
            value: 21.089
          - type: recall_at_1
            value: 83.734
          - type: recall_at_10
            value: 96.161
          - type: recall_at_100
            value: 98.137
          - type: recall_at_1000
            value: 99.182
          - type: recall_at_3
            value: 93.551
          - type: recall_at_5
            value: 94.878
      - task:
          type: Retrieval
        dataset:
          type: mteb/fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: 27a168819829fe9bcd655c2df245fb19452e8e06
        metrics:
          - type: map_at_1
            value: 24.529999999999998
          - type: map_at_10
            value: 37.229
          - type: map_at_100
            value: 39.333
          - type: map_at_1000
            value: 39.491
          - type: map_at_3
            value: 32.177
          - type: map_at_5
            value: 35.077999999999996
          - type: mrr_at_1
            value: 45.678999999999995
          - type: mrr_at_10
            value: 53.952
          - type: mrr_at_100
            value: 54.727000000000004
          - type: mrr_at_1000
            value: 54.761
          - type: mrr_at_3
            value: 51.568999999999996
          - type: mrr_at_5
            value: 52.973000000000006
          - type: ndcg_at_1
            value: 45.678999999999995
          - type: ndcg_at_10
            value: 45.297
          - type: ndcg_at_100
            value: 52.516
          - type: ndcg_at_1000
            value: 55.16
          - type: ndcg_at_3
            value: 40.569
          - type: ndcg_at_5
            value: 42.49
          - type: precision_at_1
            value: 45.678999999999995
          - type: precision_at_10
            value: 12.269
          - type: precision_at_100
            value: 1.9709999999999999
          - type: precision_at_1000
            value: 0.244
          - type: precision_at_3
            value: 25.72
          - type: precision_at_5
            value: 19.66
          - type: recall_at_1
            value: 24.529999999999998
          - type: recall_at_10
            value: 51.983999999999995
          - type: recall_at_100
            value: 78.217
          - type: recall_at_1000
            value: 94.104
          - type: recall_at_3
            value: 36.449999999999996
          - type: recall_at_5
            value: 43.336999999999996
      - task:
          type: Retrieval
        dataset:
          type: mteb/hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: ab518f4d6fcca38d87c25209f94beba119d02014
        metrics:
          - type: map_at_1
            value: 41.519
          - type: map_at_10
            value: 64.705
          - type: map_at_100
            value: 65.554
          - type: map_at_1000
            value: 65.613
          - type: map_at_3
            value: 61.478
          - type: map_at_5
            value: 63.55800000000001
          - type: mrr_at_1
            value: 83.038
          - type: mrr_at_10
            value: 87.82900000000001
          - type: mrr_at_100
            value: 87.96000000000001
          - type: mrr_at_1000
            value: 87.96300000000001
          - type: mrr_at_3
            value: 87.047
          - type: mrr_at_5
            value: 87.546
          - type: ndcg_at_1
            value: 83.038
          - type: ndcg_at_10
            value: 72.928
          - type: ndcg_at_100
            value: 75.778
          - type: ndcg_at_1000
            value: 76.866
          - type: ndcg_at_3
            value: 68.46600000000001
          - type: ndcg_at_5
            value: 71.036
          - type: precision_at_1
            value: 83.038
          - type: precision_at_10
            value: 15.040999999999999
          - type: precision_at_100
            value: 1.7260000000000002
          - type: precision_at_1000
            value: 0.187
          - type: precision_at_3
            value: 43.597
          - type: precision_at_5
            value: 28.188999999999997
          - type: recall_at_1
            value: 41.519
          - type: recall_at_10
            value: 75.20599999999999
          - type: recall_at_100
            value: 86.3
          - type: recall_at_1000
            value: 93.437
          - type: recall_at_3
            value: 65.39500000000001
          - type: recall_at_5
            value: 70.473
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: 421605374b29664c5fc098418fe20ada9bd55f8a
        metrics:
          - type: accuracy
            value: 52.04309349749903
          - type: f1
            value: 39.91893257315586
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 96.0428
          - type: ap
            value: 94.48278082595033
          - type: f1
            value: 96.0409595432081
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: b7c64bd89eb87f8ded463478346f76731f07bf8b
        metrics:
          - type: accuracy
            value: 85.60975609756099
          - type: ap
            value: 54.30148799475452
          - type: f1
            value: 80.55899583002706
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: 17f9b096f80380fce5ed12a9be8be7784b337daf
        metrics:
          - type: cos_sim_pearson
            value: 66.44418108776416
          - type: cos_sim_spearman
            value: 72.79912770347306
          - type: euclidean_pearson
            value: 71.11194894579198
          - type: euclidean_spearman
            value: 72.79912104971427
          - type: manhattan_pearson
            value: 70.96800061808604
          - type: manhattan_spearman
            value: 72.63525186107175
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6
        metrics:
          - type: map
            value: 27.9616280919871
          - type: mrr
            value: 26.544047619047618
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: 539bbde593d947e2a124ba72651aafc09eb33fc2
        metrics:
          - type: map_at_1
            value: 68.32300000000001
          - type: map_at_10
            value: 77.187
          - type: map_at_100
            value: 77.496
          - type: map_at_1000
            value: 77.503
          - type: map_at_3
            value: 75.405
          - type: map_at_5
            value: 76.539
          - type: mrr_at_1
            value: 70.616
          - type: mrr_at_10
            value: 77.703
          - type: mrr_at_100
            value: 77.97699999999999
          - type: mrr_at_1000
            value: 77.984
          - type: mrr_at_3
            value: 76.139
          - type: mrr_at_5
            value: 77.125
          - type: ndcg_at_1
            value: 70.616
          - type: ndcg_at_10
            value: 80.741
          - type: ndcg_at_100
            value: 82.123
          - type: ndcg_at_1000
            value: 82.32300000000001
          - type: ndcg_at_3
            value: 77.35600000000001
          - type: ndcg_at_5
            value: 79.274
          - type: precision_at_1
            value: 70.616
          - type: precision_at_10
            value: 9.696
          - type: precision_at_100
            value: 1.038
          - type: precision_at_1000
            value: 0.106
          - type: precision_at_3
            value: 29.026000000000003
          - type: precision_at_5
            value: 18.433
          - type: recall_at_1
            value: 68.32300000000001
          - type: recall_at_10
            value: 91.186
          - type: recall_at_100
            value: 97.439
          - type: recall_at_1000
            value: 99.004
          - type: recall_at_3
            value: 82.218
          - type: recall_at_5
            value: 86.797
      - task:
          type: Retrieval
        dataset:
          type: mteb/msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: c5a29a104738b98a9e76336939199e264163d4a0
        metrics:
          - type: map_at_1
            value: 21.496000000000002
          - type: map_at_10
            value: 33.82
          - type: map_at_100
            value: 35.013
          - type: map_at_1000
            value: 35.063
          - type: map_at_3
            value: 29.910999999999998
          - type: map_at_5
            value: 32.086
          - type: mrr_at_1
            value: 22.092
          - type: mrr_at_10
            value: 34.404
          - type: mrr_at_100
            value: 35.534
          - type: mrr_at_1000
            value: 35.577999999999996
          - type: mrr_at_3
            value: 30.544
          - type: mrr_at_5
            value: 32.711
          - type: ndcg_at_1
            value: 22.092
          - type: ndcg_at_10
            value: 40.877
          - type: ndcg_at_100
            value: 46.619
          - type: ndcg_at_1000
            value: 47.823
          - type: ndcg_at_3
            value: 32.861000000000004
          - type: ndcg_at_5
            value: 36.769
          - type: precision_at_1
            value: 22.092
          - type: precision_at_10
            value: 6.54
          - type: precision_at_100
            value: 0.943
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 14.069
          - type: precision_at_5
            value: 10.424
          - type: recall_at_1
            value: 21.496000000000002
          - type: recall_at_10
            value: 62.67
          - type: recall_at_100
            value: 89.24499999999999
          - type: recall_at_1000
            value: 98.312
          - type: recall_at_3
            value: 40.796
          - type: recall_at_5
            value: 50.21600000000001
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 95.74555403556772
          - type: f1
            value: 95.61381879323093
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 85.82763337893297
          - type: f1
            value: 63.17139719465236
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 78.51714862138535
          - type: f1
            value: 76.3995118440293
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 74.78143913920646
          - type: f1
            value: 72.6141122227626
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 80.03698722259583
          - type: f1
            value: 79.36511484240766
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 76.98722259583053
          - type: f1
            value: 76.5974920207624
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6
        metrics:
          - type: map_at_1
            value: 51.800000000000004
          - type: map_at_10
            value: 57.938
          - type: map_at_100
            value: 58.494
          - type: map_at_1000
            value: 58.541
          - type: map_at_3
            value: 56.617
          - type: map_at_5
            value: 57.302
          - type: mrr_at_1
            value: 51.800000000000004
          - type: mrr_at_10
            value: 57.938
          - type: mrr_at_100
            value: 58.494
          - type: mrr_at_1000
            value: 58.541
          - type: mrr_at_3
            value: 56.617
          - type: mrr_at_5
            value: 57.302
          - type: ndcg_at_1
            value: 51.800000000000004
          - type: ndcg_at_10
            value: 60.891
          - type: ndcg_at_100
            value: 63.897000000000006
          - type: ndcg_at_1000
            value: 65.231
          - type: ndcg_at_3
            value: 58.108000000000004
          - type: ndcg_at_5
            value: 59.343
          - type: precision_at_1
            value: 51.800000000000004
          - type: precision_at_10
            value: 7.02
          - type: precision_at_100
            value: 0.8500000000000001
          - type: precision_at_1000
            value: 0.096
          - type: precision_at_3
            value: 20.8
          - type: precision_at_5
            value: 13.08
          - type: recall_at_1
            value: 51.800000000000004
          - type: recall_at_10
            value: 70.19999999999999
          - type: recall_at_100
            value: 85
          - type: recall_at_1000
            value: 95.7
          - type: recall_at_3
            value: 62.4
          - type: recall_at_5
            value: 65.4
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 38.68901889835701
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 38.0740589898848
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 33.41312482460189
          - type: mrr
            value: 34.713530863302495
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a
        metrics:
          - type: accuracy
            value: 80.39333333333335
          - type: f1
            value: 80.42683132366277
      - task:
          type: Retrieval
        dataset:
          type: mteb/nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
        metrics:
          - type: map_at_1
            value: 6.232
          - type: map_at_10
            value: 13.442000000000002
          - type: map_at_100
            value: 17.443
          - type: map_at_1000
            value: 19.1
          - type: map_at_3
            value: 9.794
          - type: map_at_5
            value: 11.375
          - type: mrr_at_1
            value: 50.15500000000001
          - type: mrr_at_10
            value: 58.628
          - type: mrr_at_100
            value: 59.077
          - type: mrr_at_1000
            value: 59.119
          - type: mrr_at_3
            value: 56.914
          - type: mrr_at_5
            value: 57.921
          - type: ndcg_at_1
            value: 48.762
          - type: ndcg_at_10
            value: 37.203
          - type: ndcg_at_100
            value: 34.556
          - type: ndcg_at_1000
            value: 43.601
          - type: ndcg_at_3
            value: 43.004
          - type: ndcg_at_5
            value: 40.181
          - type: precision_at_1
            value: 50.15500000000001
          - type: precision_at_10
            value: 27.276
          - type: precision_at_100
            value: 8.981
          - type: precision_at_1000
            value: 2.228
          - type: precision_at_3
            value: 39.628
          - type: precision_at_5
            value: 33.808
          - type: recall_at_1
            value: 6.232
          - type: recall_at_10
            value: 18.137
          - type: recall_at_100
            value: 36.101
          - type: recall_at_1000
            value: 68.733
          - type: recall_at_3
            value: 10.978
          - type: recall_at_5
            value: 13.718
      - task:
          type: Retrieval
        dataset:
          type: mteb/nq
          name: MTEB NQ
          config: default
          split: test
          revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
        metrics:
          - type: map_at_1
            value: 35.545
          - type: map_at_10
            value: 52.083
          - type: map_at_100
            value: 52.954
          - type: map_at_1000
            value: 52.96999999999999
          - type: map_at_3
            value: 47.508
          - type: map_at_5
            value: 50.265
          - type: mrr_at_1
            value: 40.122
          - type: mrr_at_10
            value: 54.567
          - type: mrr_at_100
            value: 55.19199999999999
          - type: mrr_at_1000
            value: 55.204
          - type: mrr_at_3
            value: 51.043000000000006
          - type: mrr_at_5
            value: 53.233
          - type: ndcg_at_1
            value: 40.122
          - type: ndcg_at_10
            value: 60.012
          - type: ndcg_at_100
            value: 63.562
          - type: ndcg_at_1000
            value: 63.94
          - type: ndcg_at_3
            value: 51.681
          - type: ndcg_at_5
            value: 56.154
          - type: precision_at_1
            value: 40.122
          - type: precision_at_10
            value: 9.774
          - type: precision_at_100
            value: 1.176
          - type: precision_at_1000
            value: 0.121
          - type: precision_at_3
            value: 23.426
          - type: precision_at_5
            value: 16.686
          - type: recall_at_1
            value: 35.545
          - type: recall_at_10
            value: 81.557
          - type: recall_at_100
            value: 96.729
          - type: recall_at_1000
            value: 99.541
          - type: recall_at_3
            value: 60.185
          - type: recall_at_5
            value: 70.411
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: 66e76a618a34d6d565d5538088562851e6daa7ec
        metrics:
          - type: cos_sim_accuracy
            value: 70.7634001082837
          - type: cos_sim_ap
            value: 74.97527385556558
          - type: cos_sim_f1
            value: 72.77277277277277
          - type: cos_sim_precision
            value: 69.17221693625119
          - type: cos_sim_recall
            value: 76.76874340021119
          - type: dot_accuracy
            value: 70.7634001082837
          - type: dot_ap
            value: 74.97527385556558
          - type: dot_f1
            value: 72.77277277277277
          - type: dot_precision
            value: 69.17221693625119
          - type: dot_recall
            value: 76.76874340021119
          - type: euclidean_accuracy
            value: 70.7634001082837
          - type: euclidean_ap
            value: 74.97527385556558
          - type: euclidean_f1
            value: 72.77277277277277
          - type: euclidean_precision
            value: 69.17221693625119
          - type: euclidean_recall
            value: 76.76874340021119
          - type: manhattan_accuracy
            value: 69.89713048186248
          - type: manhattan_ap
            value: 74.25943370061067
          - type: manhattan_f1
            value: 72.17268887846082
          - type: manhattan_precision
            value: 64.94932432432432
          - type: manhattan_recall
            value: 81.20380147835269
          - type: max_accuracy
            value: 70.7634001082837
          - type: max_ap
            value: 74.97527385556558
          - type: max_f1
            value: 72.77277277277277
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: e610f2ebd179a8fda30ae534c3878750a96db120
        metrics:
          - type: accuracy
            value: 92.92000000000002
          - type: ap
            value: 91.98475625106201
          - type: f1
            value: 92.91841470541901
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1
        metrics:
          - type: cos_sim_pearson
            value: 41.23764415526825
          - type: cos_sim_spearman
            value: 46.872669471694664
          - type: euclidean_pearson
            value: 46.434144530918566
          - type: euclidean_spearman
            value: 46.872669471694664
          - type: manhattan_pearson
            value: 46.39678126910133
          - type: manhattan_spearman
            value: 46.55877754642116
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7
        metrics:
          - type: cos_sim_pearson
            value: 28.77503601696299
          - type: cos_sim_spearman
            value: 31.818095557325606
          - type: euclidean_pearson
            value: 29.811479220397125
          - type: euclidean_spearman
            value: 31.817046821577673
          - type: manhattan_pearson
            value: 29.901628633314214
          - type: manhattan_spearman
            value: 31.991472038092084
      - task:
          type: Retrieval
        dataset:
          type: mteb/quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 68.908
          - type: map_at_10
            value: 83.19
          - type: map_at_100
            value: 83.842
          - type: map_at_1000
            value: 83.858
          - type: map_at_3
            value: 80.167
          - type: map_at_5
            value: 82.053
          - type: mrr_at_1
            value: 79.46
          - type: mrr_at_10
            value: 86.256
          - type: mrr_at_100
            value: 86.37
          - type: mrr_at_1000
            value: 86.371
          - type: mrr_at_3
            value: 85.177
          - type: mrr_at_5
            value: 85.908
          - type: ndcg_at_1
            value: 79.5
          - type: ndcg_at_10
            value: 87.244
          - type: ndcg_at_100
            value: 88.532
          - type: ndcg_at_1000
            value: 88.626
          - type: ndcg_at_3
            value: 84.161
          - type: ndcg_at_5
            value: 85.835
          - type: precision_at_1
            value: 79.5
          - type: precision_at_10
            value: 13.339
          - type: precision_at_100
            value: 1.53
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 36.97
          - type: precision_at_5
            value: 24.384
          - type: recall_at_1
            value: 68.908
          - type: recall_at_10
            value: 95.179
          - type: recall_at_100
            value: 99.579
          - type: recall_at_1000
            value: 99.964
          - type: recall_at_3
            value: 86.424
          - type: recall_at_5
            value: 91.065
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 65.17897847862794
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 66.22194961632586
      - task:
          type: Retrieval
        dataset:
          type: mteb/scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.668
          - type: map_at_10
            value: 13.921
          - type: map_at_100
            value: 16.391
          - type: map_at_1000
            value: 16.749
          - type: map_at_3
            value: 10.001999999999999
          - type: map_at_5
            value: 11.974
          - type: mrr_at_1
            value: 27.800000000000004
          - type: mrr_at_10
            value: 39.290000000000006
          - type: mrr_at_100
            value: 40.313
          - type: mrr_at_1000
            value: 40.355999999999995
          - type: mrr_at_3
            value: 35.667
          - type: mrr_at_5
            value: 37.742
          - type: ndcg_at_1
            value: 27.800000000000004
          - type: ndcg_at_10
            value: 23.172
          - type: ndcg_at_100
            value: 32.307
          - type: ndcg_at_1000
            value: 38.048
          - type: ndcg_at_3
            value: 22.043
          - type: ndcg_at_5
            value: 19.287000000000003
          - type: precision_at_1
            value: 27.800000000000004
          - type: precision_at_10
            value: 11.95
          - type: precision_at_100
            value: 2.5260000000000002
          - type: precision_at_1000
            value: 0.38999999999999996
          - type: precision_at_3
            value: 20.433
          - type: precision_at_5
            value: 16.84
          - type: recall_at_1
            value: 5.668
          - type: recall_at_10
            value: 24.22
          - type: recall_at_100
            value: 51.217
          - type: recall_at_1000
            value: 79.10000000000001
          - type: recall_at_3
            value: 12.443
          - type: recall_at_5
            value: 17.068
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 82.83535239748218
          - type: cos_sim_spearman
            value: 73.98553311584509
          - type: euclidean_pearson
            value: 79.57336200069007
          - type: euclidean_spearman
            value: 73.98553926018461
          - type: manhattan_pearson
            value: 79.02277757114132
          - type: manhattan_spearman
            value: 73.52350678760683
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 81.99055838690317
          - type: cos_sim_spearman
            value: 72.05290668592296
          - type: euclidean_pearson
            value: 81.7130610313565
          - type: euclidean_spearman
            value: 72.0529066787229
          - type: manhattan_pearson
            value: 82.09213883730894
          - type: manhattan_spearman
            value: 72.5171577483134
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 84.4685161191763
          - type: cos_sim_spearman
            value: 84.4847436140129
          - type: euclidean_pearson
            value: 84.05016757016948
          - type: euclidean_spearman
            value: 84.48474353891532
          - type: manhattan_pearson
            value: 83.83064062713048
          - type: manhattan_spearman
            value: 84.30431591842805
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 83.00171021092486
          - type: cos_sim_spearman
            value: 77.91329577609622
          - type: euclidean_pearson
            value: 81.49758593915315
          - type: euclidean_spearman
            value: 77.91329577609622
          - type: manhattan_pearson
            value: 81.23255996803785
          - type: manhattan_spearman
            value: 77.80027024941825
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 86.62608607472492
          - type: cos_sim_spearman
            value: 87.62293916855751
          - type: euclidean_pearson
            value: 87.04313886714989
          - type: euclidean_spearman
            value: 87.62293907119869
          - type: manhattan_pearson
            value: 86.97266321040769
          - type: manhattan_spearman
            value: 87.61807042381702
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 80.8012095789289
          - type: cos_sim_spearman
            value: 81.91868918081325
          - type: euclidean_pearson
            value: 81.2267973811213
          - type: euclidean_spearman
            value: 81.91868918081325
          - type: manhattan_pearson
            value: 81.0173457901168
          - type: manhattan_spearman
            value: 81.79743115887055
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 88.39698537303725
          - type: cos_sim_spearman
            value: 88.78668529808967
          - type: euclidean_pearson
            value: 88.78863351718252
          - type: euclidean_spearman
            value: 88.78668529808967
          - type: manhattan_pearson
            value: 88.41678215762478
          - type: manhattan_spearman
            value: 88.3827998418763
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 68.49024974161408
          - type: cos_sim_spearman
            value: 69.19917146180619
          - type: euclidean_pearson
            value: 70.48882819806336
          - type: euclidean_spearman
            value: 69.19917146180619
          - type: manhattan_pearson
            value: 70.86827961779932
          - type: manhattan_spearman
            value: 69.38456983992613
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: eea2b4fe26a775864c896887d910b76a8098ad3f
        metrics:
          - type: cos_sim_pearson
            value: 67.41628669863584
          - type: cos_sim_spearman
            value: 67.87238206703478
          - type: euclidean_pearson
            value: 67.67834985311778
          - type: euclidean_spearman
            value: 67.87238206703478
          - type: manhattan_pearson
            value: 68.23423896742973
          - type: manhattan_spearman
            value: 68.27069260687092
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0
        metrics:
          - type: cos_sim_pearson
            value: 77.31628954400037
          - type: cos_sim_spearman
            value: 76.83296022489624
          - type: euclidean_pearson
            value: 76.69680425261211
          - type: euclidean_spearman
            value: 76.83287843321102
          - type: manhattan_pearson
            value: 76.65603163327958
          - type: manhattan_spearman
            value: 76.80803503360451
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 84.31376078795105
          - type: cos_sim_spearman
            value: 83.3985199217591
          - type: euclidean_pearson
            value: 84.06630133719332
          - type: euclidean_spearman
            value: 83.3985199217591
          - type: manhattan_pearson
            value: 83.7896654474364
          - type: manhattan_spearman
            value: 83.1885039212299
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 85.83161002188668
          - type: mrr
            value: 96.19253114351153
      - task:
          type: Retrieval
        dataset:
          type: mteb/scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: 0228b52cf27578f30900b9e5271d331663a030d7
        metrics:
          - type: map_at_1
            value: 48.132999999999996
          - type: map_at_10
            value: 58.541
          - type: map_at_100
            value: 59.34
          - type: map_at_1000
            value: 59.367999999999995
          - type: map_at_3
            value: 55.191
          - type: map_at_5
            value: 57.084
          - type: mrr_at_1
            value: 51
          - type: mrr_at_10
            value: 59.858
          - type: mrr_at_100
            value: 60.474000000000004
          - type: mrr_at_1000
            value: 60.501000000000005
          - type: mrr_at_3
            value: 57.111000000000004
          - type: mrr_at_5
            value: 58.694
          - type: ndcg_at_1
            value: 51
          - type: ndcg_at_10
            value: 63.817
          - type: ndcg_at_100
            value: 67.229
          - type: ndcg_at_1000
            value: 67.94
          - type: ndcg_at_3
            value: 57.896
          - type: ndcg_at_5
            value: 60.785999999999994
          - type: precision_at_1
            value: 51
          - type: precision_at_10
            value: 8.933
          - type: precision_at_100
            value: 1.0699999999999998
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 23.111
          - type: precision_at_5
            value: 15.733
          - type: recall_at_1
            value: 48.132999999999996
          - type: recall_at_10
            value: 78.922
          - type: recall_at_100
            value: 94.167
          - type: recall_at_1000
            value: 99.667
          - type: recall_at_3
            value: 62.806
          - type: recall_at_5
            value: 70.078
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.88415841584158
          - type: cos_sim_ap
            value: 97.72557886493401
          - type: cos_sim_f1
            value: 94.1294530858003
          - type: cos_sim_precision
            value: 94.46122860020141
          - type: cos_sim_recall
            value: 93.8
          - type: dot_accuracy
            value: 99.88415841584158
          - type: dot_ap
            value: 97.72557439066108
          - type: dot_f1
            value: 94.1294530858003
          - type: dot_precision
            value: 94.46122860020141
          - type: dot_recall
            value: 93.8
          - type: euclidean_accuracy
            value: 99.88415841584158
          - type: euclidean_ap
            value: 97.72557439066108
          - type: euclidean_f1
            value: 94.1294530858003
          - type: euclidean_precision
            value: 94.46122860020141
          - type: euclidean_recall
            value: 93.8
          - type: manhattan_accuracy
            value: 99.88514851485148
          - type: manhattan_ap
            value: 97.73324334051959
          - type: manhattan_f1
            value: 94.1825476429288
          - type: manhattan_precision
            value: 94.46680080482898
          - type: manhattan_recall
            value: 93.89999999999999
          - type: max_accuracy
            value: 99.88514851485148
          - type: max_ap
            value: 97.73324334051959
          - type: max_f1
            value: 94.1825476429288
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 72.8168026381278
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 44.30948635130784
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 54.11268548719803
          - type: mrr
            value: 55.08079747050335
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 30.82885852096243
          - type: cos_sim_spearman
            value: 30.800770979226076
          - type: dot_pearson
            value: 30.82885608827704
          - type: dot_spearman
            value: 30.800770979226076
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: 76631901a18387f85eaa53e5450019b87ad58ef9
        metrics:
          - type: map
            value: 66.73038448968596
          - type: mrr
            value: 77.26510193334836
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: 8731a845f1bf500a4f111cf1070785c793d10e64
        metrics:
          - type: map_at_1
            value: 28.157
          - type: map_at_10
            value: 79.00399999999999
          - type: map_at_100
            value: 82.51899999999999
          - type: map_at_1000
            value: 82.577
          - type: map_at_3
            value: 55.614
          - type: map_at_5
            value: 68.292
          - type: mrr_at_1
            value: 91.167
          - type: mrr_at_10
            value: 93.391
          - type: mrr_at_100
            value: 93.467
          - type: mrr_at_1000
            value: 93.47
          - type: mrr_at_3
            value: 93.001
          - type: mrr_at_5
            value: 93.254
          - type: ndcg_at_1
            value: 91.167
          - type: ndcg_at_10
            value: 86.155
          - type: ndcg_at_100
            value: 89.425
          - type: ndcg_at_1000
            value: 89.983
          - type: ndcg_at_3
            value: 87.516
          - type: ndcg_at_5
            value: 86.148
          - type: precision_at_1
            value: 91.167
          - type: precision_at_10
            value: 42.697
          - type: precision_at_100
            value: 5.032
          - type: precision_at_1000
            value: 0.516
          - type: precision_at_3
            value: 76.45100000000001
          - type: precision_at_5
            value: 64.051
          - type: recall_at_1
            value: 28.157
          - type: recall_at_10
            value: 84.974
          - type: recall_at_100
            value: 95.759
          - type: recall_at_1000
            value: 98.583
          - type: recall_at_3
            value: 57.102
          - type: recall_at_5
            value: 71.383
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: 317f262bf1e6126357bbe89e875451e4b0938fe4
        metrics:
          - type: accuracy
            value: 55.031
          - type: f1
            value: 53.07992810732314
      - task:
          type: Retrieval
        dataset:
          type: mteb/trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.20400000000000001
          - type: map_at_10
            value: 1.27
          - type: map_at_100
            value: 7.993
          - type: map_at_1000
            value: 20.934
          - type: map_at_3
            value: 0.469
          - type: map_at_5
            value: 0.716
          - type: mrr_at_1
            value: 76
          - type: mrr_at_10
            value: 84.967
          - type: mrr_at_100
            value: 84.967
          - type: mrr_at_1000
            value: 84.967
          - type: mrr_at_3
            value: 83.667
          - type: mrr_at_5
            value: 84.967
          - type: ndcg_at_1
            value: 69
          - type: ndcg_at_10
            value: 59.243
          - type: ndcg_at_100
            value: 48.784
          - type: ndcg_at_1000
            value: 46.966
          - type: ndcg_at_3
            value: 64.14
          - type: ndcg_at_5
            value: 61.60600000000001
          - type: precision_at_1
            value: 76
          - type: precision_at_10
            value: 62.6
          - type: precision_at_100
            value: 50.18
          - type: precision_at_1000
            value: 21.026
          - type: precision_at_3
            value: 68.667
          - type: precision_at_5
            value: 66
          - type: recall_at_1
            value: 0.20400000000000001
          - type: recall_at_10
            value: 1.582
          - type: recall_at_100
            value: 11.988
          - type: recall_at_1000
            value: 44.994
          - type: recall_at_3
            value: 0.515
          - type: recall_at_5
            value: 0.844
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: 5798586b105c0434e4f0fe5e767abe619442cf93
        metrics:
          - type: v_measure
            value: 72.80915114296552
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d
        metrics:
          - type: v_measure
            value: 70.86374654127641
      - task:
          type: Retrieval
        dataset:
          type: mteb/touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
        metrics:
          - type: map_at_1
            value: 3.3009999999999997
          - type: map_at_10
            value: 11.566
          - type: map_at_100
            value: 17.645
          - type: map_at_1000
            value: 19.206
          - type: map_at_3
            value: 6.986000000000001
          - type: map_at_5
            value: 8.716
          - type: mrr_at_1
            value: 42.857
          - type: mrr_at_10
            value: 58.287
          - type: mrr_at_100
            value: 59.111000000000004
          - type: mrr_at_1000
            value: 59.111000000000004
          - type: mrr_at_3
            value: 55.102
          - type: mrr_at_5
            value: 57.449
          - type: ndcg_at_1
            value: 39.796
          - type: ndcg_at_10
            value: 29.059
          - type: ndcg_at_100
            value: 40.629
          - type: ndcg_at_1000
            value: 51.446000000000005
          - type: ndcg_at_3
            value: 36.254999999999995
          - type: ndcg_at_5
            value: 32.216
          - type: precision_at_1
            value: 42.857
          - type: precision_at_10
            value: 23.469
          - type: precision_at_100
            value: 8.041
          - type: precision_at_1000
            value: 1.551
          - type: precision_at_3
            value: 36.735
          - type: precision_at_5
            value: 30.203999999999997
          - type: recall_at_1
            value: 3.3009999999999997
          - type: recall_at_10
            value: 17.267
          - type: recall_at_100
            value: 49.36
          - type: recall_at_1000
            value: 83.673
          - type: recall_at_3
            value: 8.049000000000001
          - type: recall_at_5
            value: 11.379999999999999
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 88.7576
          - type: ap
            value: 35.52110634325751
          - type: f1
            value: 74.14476947482417
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 73.52009054895304
          - type: f1
            value: 73.81407409876577
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 54.35358706465052
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 83.65619598259522
          - type: cos_sim_ap
            value: 65.824087818991
          - type: cos_sim_f1
            value: 61.952620244077536
          - type: cos_sim_precision
            value: 56.676882661996494
          - type: cos_sim_recall
            value: 68.311345646438
          - type: dot_accuracy
            value: 83.65619598259522
          - type: dot_ap
            value: 65.82406256999921
          - type: dot_f1
            value: 61.952620244077536
          - type: dot_precision
            value: 56.676882661996494
          - type: dot_recall
            value: 68.311345646438
          - type: euclidean_accuracy
            value: 83.65619598259522
          - type: euclidean_ap
            value: 65.82409143427542
          - type: euclidean_f1
            value: 61.952620244077536
          - type: euclidean_precision
            value: 56.676882661996494
          - type: euclidean_recall
            value: 68.311345646438
          - type: manhattan_accuracy
            value: 83.4296954163438
          - type: manhattan_ap
            value: 65.20662449614932
          - type: manhattan_f1
            value: 61.352885525070946
          - type: manhattan_precision
            value: 55.59365623660523
          - type: manhattan_recall
            value: 68.44327176781002
          - type: max_accuracy
            value: 83.65619598259522
          - type: max_ap
            value: 65.82409143427542
          - type: max_f1
            value: 61.952620244077536
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.90119144642372
          - type: cos_sim_ap
            value: 84.04753852793387
          - type: cos_sim_f1
            value: 76.27737226277372
          - type: cos_sim_precision
            value: 73.86757068667052
          - type: cos_sim_recall
            value: 78.84970742223591
          - type: dot_accuracy
            value: 87.90119144642372
          - type: dot_ap
            value: 84.04753668117337
          - type: dot_f1
            value: 76.27737226277372
          - type: dot_precision
            value: 73.86757068667052
          - type: dot_recall
            value: 78.84970742223591
          - type: euclidean_accuracy
            value: 87.90119144642372
          - type: euclidean_ap
            value: 84.04754553468206
          - type: euclidean_f1
            value: 76.27737226277372
          - type: euclidean_precision
            value: 73.86757068667052
          - type: euclidean_recall
            value: 78.84970742223591
          - type: manhattan_accuracy
            value: 87.87014398261343
          - type: manhattan_ap
            value: 84.05164646221583
          - type: manhattan_f1
            value: 76.31392706820128
          - type: manhattan_precision
            value: 73.91586694566708
          - type: manhattan_recall
            value: 78.87280566676932
          - type: max_accuracy
            value: 87.90119144642372
          - type: max_ap
            value: 84.05164646221583
          - type: max_f1
            value: 76.31392706820128
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: 58c2597a5943a2ba48f4668c3b90d796283c5639
        metrics:
          - type: map_at_1
            value: 63.6
          - type: map_at_10
            value: 72.673
          - type: map_at_100
            value: 73.05199999999999
          - type: map_at_1000
            value: 73.057
          - type: map_at_3
            value: 70.833
          - type: map_at_5
            value: 72.05799999999999
          - type: mrr_at_1
            value: 63.6
          - type: mrr_at_10
            value: 72.673
          - type: mrr_at_100
            value: 73.05199999999999
          - type: mrr_at_1000
            value: 73.057
          - type: mrr_at_3
            value: 70.833
          - type: mrr_at_5
            value: 72.05799999999999
          - type: ndcg_at_1
            value: 63.6
          - type: ndcg_at_10
            value: 76.776
          - type: ndcg_at_100
            value: 78.52900000000001
          - type: ndcg_at_1000
            value: 78.696
          - type: ndcg_at_3
            value: 73.093
          - type: ndcg_at_5
            value: 75.288
          - type: precision_at_1
            value: 63.6
          - type: precision_at_10
            value: 8.95
          - type: precision_at_100
            value: 0.975
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 26.533
          - type: precision_at_5
            value: 16.98
          - type: recall_at_1
            value: 63.6
          - type: recall_at_10
            value: 89.5
          - type: recall_at_100
            value: 97.5
          - type: recall_at_1000
            value: 98.9
          - type: recall_at_3
            value: 79.60000000000001
          - type: recall_at_5
            value: 84.89999999999999
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: 339287def212450dcaa9df8c22bf93e9980c7023
        metrics:
          - type: accuracy
            value: 89.39999999999999
          - type: ap
            value: 75.52087544076016
          - type: f1
            value: 87.7629629899278

GME Logo

GME: General Multimodal Embedding

GME-Qwen2-VL-2B

We are excited to present GME-Qwen2VL series of unified multimodal embedding models, which are based on the advanced Qwen2-VL multimodal large language models (MLLMs).

The GME models support three types of input: text, image, and image-text pair, all of which can produce universal vector representations and have powerful retrieval performance.

Key Enhancements of GME Models:

  • Unified Multimodal Representation: GME models can process both single-modal and combined-modal inputs, resulting in a unified vector representation. This enables versatile retrieval scenarios (Any2Any Search), supporting tasks such as text retrieval, image retrieval from text, and image-to-image searches.
  • High Performance: Achieves state-of-the-art (SOTA) results in our universal multimodal retrieval benchmark (UMRB) and demonstrate strong evaluation scores in the Multimodal Textual Evaluation Benchmark (MTEB).
  • Dynamic Image Resolution: Benefiting from Qwen2-VL and our training data, GME models support dynamic resolution image input.
  • Strong Visual Retrieval Performance: Enhanced by the Qwen2-VL model series, our models excel in visual document retrieval tasks that require a nuanced understanding of document screenshots. This capability is particularly beneficial for complex document understanding scenarios, such as multimodal retrieval-augmented generation (RAG) applications focused on academic papers.

Developed by: Tongyi Lab, Alibaba Group

Paper: GME: Improving Universal Multimodal Retrieval by Multimodal LLMs

Model List

Models Model Size Max Seq. Length Dimension MTEB-en MTEB-zh UMRB
gme-Qwen2-VL-2B 2.21B 32768 1536 65.27 66.92 64.45
gme-Qwen2-VL-7B 8.29B 32768 3584 67.48 69.73 67.44

Usage

Use with custom code

# You can find the script gme_inference.py in https://huggingface.co/Alibaba-NLP/gme-Qwen2VL-2B/blob/main/scripts/gme_inference.py
from gme_inference import GmeQwen2VL

texts = [
    "What kind of car is this?",
    "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023."
]
images = [
    'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg',
    'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg',
]

gme = GmeQwen2VL("Alibaba-NLP/gme-Qwen2-VL-2B-Instruct")

# Single-modal embedding
e_text = gme.get_text_embeddings(texts=texts)
e_image = gme.get_image_embeddings(images=images)
print((e_text * e_image).sum(-1))
## tensor([0.2281, 0.6001], dtype=torch.float16)

# How to set embedding instruction
e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.')
# If is_query=False, we always use the default instruction.
e_corpus = gme.get_image_embeddings(images=images, is_query=False)
print((e_query * e_corpus).sum(-1))
## tensor([0.2433, 0.7051], dtype=torch.float16)

# Fused-modal embedding
e_fused = gme.get_fused_embeddings(texts=texts, images=images)
print((e_fused[0] * e_fused[1]).sum())
## tensor(0.6108, dtype=torch.float16)

Evaluation

We validated the performance on our universal multimodal retrieval benchmark (UMRB) among others.

Single-modal Cross-modal Fused-modal Avg.
T→T (16) I→I (1) T→I (4) T→VD (10) I→T (4) T→IT (2) IT→T (5) IT→I (2) IT→IT (3) (47)
VISTA 0.2B 55.15 31.98 32.88 10.12 31.23 45.81 53.32 8.97 26.26 37.32
CLIP-SF 0.4B 39.75 31.42 59.05 24.09 62.95 66.41 53.32 34.9 55.65 43.66
One-Peace 4B 43.54 31.27 61.38 42.9 65.59 42.72 28.29 6.73 23.41 42.01
DSE 4.2B 48.94 27.92 40.75 78.21 52.54 49.62 35.44 8.36 40.18 50.04
E5-V 8.4B 52.41 27.36 46.56 41.22 47.95 54.13 32.9 23.17 7.23 42.52
GME-Qwen2-VL-2B 2.2B 55.93 29.86 57.36 87.84 61.93 76.47 64.58 37.02 66.47 64.45
GME-Qwen2-VL-7B 8.3B 58.19 31.89 61.35 89.92 65.83 80.94 66.18 42.56 73.62 67.44

The MTEB Leaderboard English tab shows the text embeddings performence of our model.

More detailed experimental results can be found in the paper.

Limitations

  • Single Image Input: In Qwen2-VL, an image could be converted into a very large number of visual tokens. We limit the number of visual tokens to 1024 to obtain a good training efficiency. Due to the lack of relevant data, our models and evaluations retain one single image.
  • English-only Training: Our models are trained on english data only. Although the Qwen2-VL models are multilingual, the multilingual-multimodal embedding performance are not guaranteed.

We will extend to multi-image input, image-text interleaved data as well as multilingual data in the future version.

Redistribution and Use

We encourage and value diverse applications of GME models and continuous enhancements to the models themselves.

  • If you distribute or make GME models (or any derivative works) available, or if you create a product or service (including another AI model) that incorporates them, you must prominently display Built with GME on your website, user interface, blog post, About page, or product documentation.

  • If you utilize GME models or their outputs to develop, train, fine-tune, or improve an AI model that is distributed or made available, you must prefix the name of any such AI model with GME.

Cloud API Services

In addition to the open-source GME series models, GME series models are also available as commercial API services on Alibaba Cloud.

Note that the models behind the commercial APIs are not entirely identical to the open-source models.

Hiring

We have open positions for Research Interns and Full-Time Researchers to join our team at Tongyi Lab. We are seeking passionate individuals with expertise in representation learning, LLM-driven information retrieval, Retrieval-Augmented Generation (RAG), and agent-based systems. Our team is located in the vibrant cities of Beijing and Hangzhou, offering a collaborative and dynamic work environment where you can contribute to cutting-edge advancements in artificial intelligence and machine learning. If you are driven by curiosity and eager to make a meaningful impact through your work, we would love to hear from you. Please submit your resume along with a brief introduction to [email protected].

Citation

If you find our paper or models helpful, please consider cite:

@misc{zhang2024gme,
      title={GME: Improving Universal Multimodal Retrieval by Multimodal LLMs}, 
      author={Zhang, Xin and Zhang, Yanzhao and Xie, Wen and Li, Mingxin and Dai, Ziqi and Long, Dingkun and Xie, Pengjun and Zhang, Meishan and Li, Wenjie and Zhang, Min},
      year={2024},
      eprint={2412.16855},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={http://arxiv.org/abs/2412.16855}, 
}