outputs
This model is a fine-tuned version of microsoft/phi-2 using trl on ultrafeedback dataset.
What's new
A test for ORPO: Monolithic Preference Optimization without Reference Model method using trl library.
How to reproduce
accelerate launch --config_file=/path/to/trl/examples/accelerate_configs/deepspeed_zero2.yaml \
--num_processes 8 \
/path/to/trl/scripts/orpo.py \
--model_name_or_path="microsoft/phi-2" \
--per_device_train_batch_size 1 \
--max_steps 8000 \
--learning_rate 8e-5 \
--gradient_accumulation_steps 1 \
--logging_steps 20 \
--eval_steps 2000 \
--output_dir="orpo-lora-phi2" \
--optim rmsprop \
--warmup_steps 150 \
--bf16 \
--logging_first_step \
--no_remove_unused_columns \
--use_peft \
--lora_r=16 \
--lora_alpha=16 \
--dataset HuggingFaceH4/ultrafeedback_binarized
- Downloads last month
- 75
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.