sentiment2

This model is a fine-tuned version of lxyuan/distilbert-base-multilingual-cased-sentiments-student on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6085
  • Accuracy: 0.9151
  • Precision: 0.9153
  • Recall: 0.9151
  • F1: 0.9150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 40
  • eval_batch_size: 40
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 275 0.2543 0.9190 0.9213 0.9190 0.9196
0.2191 2.0 550 0.2710 0.9143 0.9133 0.9143 0.9134
0.2191 3.0 825 0.3715 0.9135 0.9144 0.9135 0.9114
0.0714 4.0 1100 0.4751 0.9071 0.9085 0.9071 0.9077
0.0714 5.0 1375 0.4859 0.9206 0.9214 0.9206 0.9203
0.0263 6.0 1650 0.5383 0.9143 0.9155 0.9143 0.9143
0.0263 7.0 1925 0.5630 0.9167 0.9166 0.9167 0.9165
0.0126 8.0 2200 0.5916 0.9151 0.9151 0.9151 0.9146
0.0126 9.0 2475 0.6073 0.9135 0.9130 0.9135 0.9131
0.0056 10.0 2750 0.6085 0.9151 0.9153 0.9151 0.9150

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
35
Safetensors
Model size
135M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AptaArkana/indonesian_sentiment_distilbert_base_cased

Dataset used to train AptaArkana/indonesian_sentiment_distilbert_base_cased

Evaluation results