a2c-PandaReachDense-v2 / config.json
Arch4ngel's picture
Initial commit
5f44440
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fd32daaa430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd32daa29c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677960998521204651, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA1n/WPq3RijyaLwk/1n/WPq3RijyaLwk/1n/WPq3RijyaLwk/1n/WPq3RijyaLwk/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAw0C/P7PnnL+oDWS/rh4pv4QtaD4PgU+/d/2lvy2Qtb/ANjs/TF1Lv3Y4iL8zqic/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADWf9Y+rdGKPJovCT+DDjo97AlhukaRNT3Wf9Y+rdGKPJovCT+DDjo97AlhukaRNT3Wf9Y+rdGKPJovCT+DDjo97AlhukaRNT3Wf9Y+rdGKPJovCT+DDjo97AlhukaRNT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.41894406 0.01694568 0.5358826 ]\n [0.41894406 0.01694568 0.5358826 ]\n [0.41894406 0.01694568 0.5358826 ]\n [0.41894406 0.01694568 0.5358826 ]]", "desired_goal": "[[ 1.4941639 -1.2258209 -0.8908334 ]\n [-0.6606244 0.22673613 -0.810563 ]\n [-1.2967976 -1.4184624 0.73130417]\n [-0.79439235 -1.064223 0.6549408 ]]", "observation": "[[ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]\n [ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]\n [ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]\n [ 0.41894406 0.01694568 0.5358826 0.045424 -0.00085845 0.044328 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAbTYMPl9fZD2D6qQ8wh8KPGie2b1W9mY+mgqRPbboBL6iGTs+g7k4PAr9+reUN1w+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 1.3692637e-01 5.5755015e-02 2.0131355e-02]\n [ 8.4304232e-03 -1.0625917e-01 2.2554907e-01]\n [ 7.0821002e-02 -1.2979397e-01 1.8271497e-01]\n [ 1.1274698e-02 -2.9920153e-05 2.1505576e-01]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIcR+5Nek28r+UhpRSlIwBbJRLMowBdJRHQKjxP8sMAm11fZQoaAZoCWgPQwh6U5EKY0vyv5SGlFKUaBVLMmgWR0Co8PBbnoxIdX2UKGgGaAloD0MIdTxmoDL+97+UhpRSlGgVSzJoFkdAqPCt9Sde6nV9lChoBmgJaA9DCPBMaJJY0u2/lIaUUpRoFUsyaBZHQKjwbk5p8F91fZQoaAZoCWgPQwg0aOif4GLfv5SGlFKUaBVLMmgWR0Co8l0XpGF0dX2UKGgGaAloD0MIF9Uiopi82b+UhpRSlGgVSzJoFkdAqPINsHjZMHV9lChoBmgJaA9DCEuxo3Go3/K/lIaUUpRoFUsyaBZHQKjxyzWPLgZ1fZQoaAZoCWgPQwgXDK65o//Yv5SGlFKUaBVLMmgWR0Co8Yuy/sVtdX2UKGgGaAloD0MIFF6CUx9I5L+UhpRSlGgVSzJoFkdAqPNx4fOlf3V9lChoBmgJaA9DCNKPhlPmZuS/lIaUUpRoFUsyaBZHQKjzImfoRqZ1fZQoaAZoCWgPQwgD0v4HWKvnv5SGlFKUaBVLMmgWR0Co8t/3WWhRdX2UKGgGaAloD0MIh4xHqYQn87+UhpRSlGgVSzJoFkdAqPKgP5HmR3V9lChoBmgJaA9DCHTRkPEoFfC/lIaUUpRoFUsyaBZHQKj0iEBbOeJ1fZQoaAZoCWgPQwgCnN7F+3Hjv5SGlFKUaBVLMmgWR0Co9DikXUH6dX2UKGgGaAloD0MIhJz3/3FC7b+UhpRSlGgVSzJoFkdAqPP1+3H7xnV9lChoBmgJaA9DCLSs+8dCtPa/lIaUUpRoFUsyaBZHQKjztmI0qH51fZQoaAZoCWgPQwjgZYaNsn7iv5SGlFKUaBVLMmgWR0Co9aAOavzOdX2UKGgGaAloD0MIfERMiSR66L+UhpRSlGgVSzJoFkdAqPVRksjFAHV9lChoBmgJaA9DCLix2ZHqO+q/lIaUUpRoFUsyaBZHQKj1D9n9Nvh1fZQoaAZoCWgPQwgGKuPfZ1z3v5SGlFKUaBVLMmgWR0Co9NBLGrCFdX2UKGgGaAloD0MIjgWFQZkG+L+UhpRSlGgVSzJoFkdAqPcXvKEFn3V9lChoBmgJaA9DCBedLLXer/K/lIaUUpRoFUsyaBZHQKj2yURnOB11fZQoaAZoCWgPQwhkrDb/rzrxv5SGlFKUaBVLMmgWR0Co9oetKZlWdX2UKGgGaAloD0MIJ9pVSPnJ5b+UhpRSlGgVSzJoFkdAqPZJAv+OwXV9lChoBmgJaA9DCBiUaTS52PG/lIaUUpRoFUsyaBZHQKj44NIbwSd1fZQoaAZoCWgPQwhBDkqYaXvsv5SGlFKUaBVLMmgWR0Co+JIZZSvUdX2UKGgGaAloD0MIcO8a9KV38r+UhpRSlGgVSzJoFkdAqPhQQ6IWQHV9lChoBmgJaA9DCCAJ+3YS0fa/lIaUUpRoFUsyaBZHQKj4EVclgMN1fZQoaAZoCWgPQwh+xoUDIdnzv5SGlFKUaBVLMmgWR0Co+pzTF2mpdX2UKGgGaAloD0MILsiW5euy8b+UhpRSlGgVSzJoFkdAqPpOF8G9pXV9lChoBmgJaA9DCHHJcad0MPO/lIaUUpRoFUsyaBZHQKj6DDzAeq91fZQoaAZoCWgPQwhpq5LIPsj7v5SGlFKUaBVLMmgWR0Co+c1SGahIdX2UKGgGaAloD0MIQ+T09XxN6b+UhpRSlGgVSzJoFkdAqPyH58BuGnV9lChoBmgJaA9DCOXwSScSzOi/lIaUUpRoFUsyaBZHQKj8OZR8+id1fZQoaAZoCWgPQwi5OZUMAFX2v5SGlFKUaBVLMmgWR0Co+/hZIQOGdX2UKGgGaAloD0MI3jtqTIh59b+UhpRSlGgVSzJoFkdAqPu5wsGxEHV9lChoBmgJaA9DCMZNDTSfc+S/lIaUUpRoFUsyaBZHQKj+YpJf6XV1fZQoaAZoCWgPQwgbSu1FtJ3mv5SGlFKUaBVLMmgWR0Co/hQyAQQMdX2UKGgGaAloD0MI0lJ5O8Jp7L+UhpRSlGgVSzJoFkdAqP3SnvUjLXV9lChoBmgJaA9DCL9EvHX+beC/lIaUUpRoFUsyaBZHQKj9k4smOVB1fZQoaAZoCWgPQwi0Imqiz0fgv5SGlFKUaBVLMmgWR0CpAD+AuqWDdX2UKGgGaAloD0MIPglszsGz7L+UhpRSlGgVSzJoFkdAqP/xHf/FSHV9lChoBmgJaA9DCLzqAfOQqeW/lIaUUpRoFUsyaBZHQKj/r7gsK9h1fZQoaAZoCWgPQwh07+GS407pv5SGlFKUaBVLMmgWR0Co/3D4QBgedX2UKGgGaAloD0MIz6J3KuCe3r+UhpRSlGgVSzJoFkdAqQGKsXBP9HV9lChoBmgJaA9DCPP/qiNHOue/lIaUUpRoFUsyaBZHQKkBOzsyBTZ1fZQoaAZoCWgPQwjFymjk84rkv5SGlFKUaBVLMmgWR0CpAPjXFtKqdX2UKGgGaAloD0MIH7sLlBTY7b+UhpRSlGgVSzJoFkdAqQC5NTLntHV9lChoBmgJaA9DCJfkgF1NHvC/lIaUUpRoFUsyaBZHQKkCm5y2hIx1fZQoaAZoCWgPQwh3nQ35Z0byv5SGlFKUaBVLMmgWR0CpAkv420iRdX2UKGgGaAloD0MIOSf20D6W/L+UhpRSlGgVSzJoFkdAqQIJhnanJnV9lChoBmgJaA9DCNhhTPp7qeO/lIaUUpRoFUsyaBZHQKkBycDKYAt1fZQoaAZoCWgPQwg1JO6x9KHdv5SGlFKUaBVLMmgWR0CpA7DZDiOvdX2UKGgGaAloD0MI/u2yX3c677+UhpRSlGgVSzJoFkdAqQNhWvKU3XV9lChoBmgJaA9DCCpyiLg5Ffe/lIaUUpRoFUsyaBZHQKkDHv7WNFV1fZQoaAZoCWgPQwjJO4cyVAX0v5SGlFKUaBVLMmgWR0CpAt8x9G7SdX2UKGgGaAloD0MIPWNfsvFg8L+UhpRSlGgVSzJoFkdAqQTGVkc0cnV9lChoBmgJaA9DCD4/jBAe7eO/lIaUUpRoFUsyaBZHQKkEdyfcvdx1fZQoaAZoCWgPQwjE7dCwGHXqv5SGlFKUaBVLMmgWR0CpBDUD2alUdX2UKGgGaAloD0MIteBFX0Fa8L+UhpRSlGgVSzJoFkdAqQP1jAi3X3V9lChoBmgJaA9DCM7fhEIEHN+/lIaUUpRoFUsyaBZHQKkFzgmZ3LV1fZQoaAZoCWgPQwhAMbJkjuXmv5SGlFKUaBVLMmgWR0CpBX7iqABldX2UKGgGaAloD0MIWOGWj6Sk4L+UhpRSlGgVSzJoFkdAqQU8TewcHXV9lChoBmgJaA9DCIsYdhiTfuy/lIaUUpRoFUsyaBZHQKkE/KJVKf51fZQoaAZoCWgPQwib5bLROT/bv5SGlFKUaBVLMmgWR0CpBufMnqmkdX2UKGgGaAloD0MIDoY6rHBL4r+UhpRSlGgVSzJoFkdAqQaYEB8x9HV9lChoBmgJaA9DCHvdIjDWd/G/lIaUUpRoFUsyaBZHQKkGVaX8fmt1fZQoaAZoCWgPQwgFpWjlXuDyv5SGlFKUaBVLMmgWR0CpBhXYtg8bdX2UKGgGaAloD0MIHy457pQO6L+UhpRSlGgVSzJoFkdAqQgJt78ejnV9lChoBmgJaA9DCA2MvKyJBfG/lIaUUpRoFUsyaBZHQKkHumb9ZRt1fZQoaAZoCWgPQwi0PA/uzlrlv5SGlFKUaBVLMmgWR0CpB3gprk8zdX2UKGgGaAloD0MI0v9yLVoA6r+UhpRSlGgVSzJoFkdAqQc4tapxWHV9lChoBmgJaA9DCBUeNLvure2/lIaUUpRoFUsyaBZHQKkJLBCUorp1fZQoaAZoCWgPQwiOI9biUwDov5SGlFKUaBVLMmgWR0CpCNy0jTrndX2UKGgGaAloD0MIGVjH8UMl6r+UhpRSlGgVSzJoFkdAqQiaXF98Z3V9lChoBmgJaA9DCE890uC2tvC/lIaUUpRoFUsyaBZHQKkIWsxO+Ix1fZQoaAZoCWgPQwhBgAwdOyjgv5SGlFKUaBVLMmgWR0CpCj7uMMqjdX2UKGgGaAloD0MIfGEyVTCq7b+UhpRSlGgVSzJoFkdAqQnvi97F9HV9lChoBmgJaA9DCBE10eejTPG/lIaUUpRoFUsyaBZHQKkJrSG8Emp1fZQoaAZoCWgPQwjdYROZucDsv5SGlFKUaBVLMmgWR0CpCW17Qb++dX2UKGgGaAloD0MIgQabOo8K5L+UhpRSlGgVSzJoFkdAqQtS5uqFRHV9lChoBmgJaA9DCAcMkj6t4vK/lIaUUpRoFUsyaBZHQKkLA3gDRtx1fZQoaAZoCWgPQwijkjoBTYTkv5SGlFKUaBVLMmgWR0CpCsELx7RfdX2UKGgGaAloD0MImkLnNXaJ3r+UhpRSlGgVSzJoFkdAqQqBSiudPXV9lChoBmgJaA9DCPJCOjyEsfC/lIaUUpRoFUsyaBZHQKkMZNcGC7N1fZQoaAZoCWgPQwh2bATidf3mv5SGlFKUaBVLMmgWR0CpDBYnndO7dX2UKGgGaAloD0MIuVM6WP9n5r+UhpRSlGgVSzJoFkdAqQvUsrd30XV9lChoBmgJaA9DCNEHy9jQzd6/lIaUUpRoFUsyaBZHQKkLlQ4S6Dp1fZQoaAZoCWgPQwgzi1BsBc3sv5SGlFKUaBVLMmgWR0CpDW/hl18tdX2UKGgGaAloD0MIpS2u8Zns7r+UhpRSlGgVSzJoFkdAqQ0gc5sCT3V9lChoBmgJaA9DCKKXUSy3NOm/lIaUUpRoFUsyaBZHQKkM3d7fHgh1fZQoaAZoCWgPQwi8s3bbhebiv5SGlFKUaBVLMmgWR0CpDJ4+8oQWdX2UKGgGaAloD0MIA+0OKQYI87+UhpRSlGgVSzJoFkdAqQ53trsSkHV9lChoBmgJaA9DCJwwYTQr292/lIaUUpRoFUsyaBZHQKkOKCOmzjZ1fZQoaAZoCWgPQwiPOGQD6WLXv5SGlFKUaBVLMmgWR0CpDeWSlnAZdX2UKGgGaAloD0MIRPmCFhIw37+UhpRSlGgVSzJoFkdAqQ2l0Lc9GXV9lChoBmgJaA9DCARUOIJUCuC/lIaUUpRoFUsyaBZHQKkPgRZEDyR1fZQoaAZoCWgPQwi9qx4wDxnov5SGlFKUaBVLMmgWR0CpDzGnn+yadX2UKGgGaAloD0MIJGHfTiLC67+UhpRSlGgVSzJoFkdAqQ7vQdCE6HV9lChoBmgJaA9DCB8OEqJ8weC/lIaUUpRoFUsyaBZHQKkOr2tdRix1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}