SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-multilingual-cased on the default dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-multilingual-cased
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'1 Concrete is typically measured by cubic yards (3â\x80\x99x3â\x80\x99x3â\x80\x99). 2 An average cost for a cubic yard of concrete is $75 to $125, depending on how much is needed and local prices. 3 Labor costs to pour and form concrete run somewhere around $3.50 to $7.00 per square foot. An average cost for a cubic yard of concrete is $75 to $125, depending on how much is needed and local prices. 2 Labor costs to pour and form concrete run somewhere around $3.50 to $7.00 per square foot.',
'1 Beton biasanya diukur dengan meter kubik (3âÂâââx3Ãâ¢Ã‚ââx3âÂââ„¢). 2 Biaya rata-rata untuk satu yard kubik beton adalah $75 sampai $125, tergantung pada berapa banyak yang dibutuhkan dan harga setempat. 3 Biaya tenaga kerja untuk menuangkan dan membentuk beton berkisar antara $3,50 hingga $7,00 per kaki persegi. Biaya rata-rata untuk satu yard kubik beton adalah $75 sampai $125, tergantung pada berapa banyak yang dibutuhkan dan harga lokal. 2 Biaya tenaga kerja untuk menuangkan dan membentuk beton berkisar antara $3,50 hingga $7,00 per kaki persegi.',
"Parrot Tattoos - Polly ingin cracker.. Ungkapan ini identik dengan 'parrot', terutama yang duduk di bahu bajak laut, seperti yang dibuat terkenal dalam cerita klasik Robert Louis Stevenson, Treasure Island (1883).lint', yang mungkin tidak adalah burung beo pertama yang diasosiasikan dengan nama 'Polly', tapi dia pasti mempopulerkannya. Dan Polly tentu memastikan burung beo itu akan menjadi simbol ikonik dari tradisi bajak laut. Sebagai pendamping legendaris bagi manusia, burung beo menyarankan semacam wali.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Knowledge Distillation
- Dataset:
default
- Evaluated with
MSEEvaluator
Metric | Value |
---|---|
negative_mse | -3.5554 |
Translation
- Dataset:
default
- Evaluated with
TranslationEvaluator
Metric | Value |
---|---|
src2trg_accuracy | 0.9894 |
trg2src_accuracy | 0.9861 |
mean_accuracy | 0.9877 |
Training Details
Training Dataset
default
- Dataset: default at c8bc0cb
- Size: 1,000,000 training samples
- Columns:
english
,indonesian
, andlabel
- Approximate statistics based on the first 1000 samples:
english indonesian label type string string list details - min: 4 tokens
- mean: 44.27 tokens
- max: 128 tokens
- min: 5 tokens
- mean: 48.93 tokens
- max: 128 tokens
- size: 768 elements
- Samples:
english indonesian label This sample job description shares how one smaller sized, growing, multi-site nonprofit organization configured the role of executive director.The executive director is responsible for general management as well as designing a national expansion plan. There also is a heavy emphasis on program evaluation.Feel free to use this sample job description in creating one for your organization.osition. Reporting to the Board of Directors, the Executive Director (ED) will have overall strategic and operational responsibility for XYZ Nonprofit's staff, programs, expansion, and execution of its mission. S/he will initially develop deep knowledge of field, core programs, operations, and business plans.
Uraian tugas contoh ini membagikan bagaimana satu organisasi nirlaba multi-situs berukuran lebih kecil, berkembang, mengonfigurasi peran direktur eksekutif. Direktur eksekutif bertanggung jawab atas manajemen umum serta merancang rencana ekspansi nasional. Ada juga penekanan berat pada evaluasi program. Jangan ragu untuk menggunakan contoh deskripsi pekerjaan ini dalam membuat satu untuk posisi organisasi Anda. Melaporkan kepada Dewan Direksi, Direktur Eksekutif (ED) akan memiliki tanggung jawab strategis dan operasional secara keseluruhan untuk staf, program, ekspansi, dan pelaksanaan misi XYZ Nirlaba. Dia awalnya akan mengembangkan pengetahuan yang mendalam tentang lapangan, program inti, operasi, dan rencana bisnis.
[-0.4337165653705597, -0.0650932714343071, -0.04308838024735451, -0.1756953001022339, 0.32854965329170227, ...]
Industrial revolution occured last in Russia. In Germany, France and United States industrial revolution occured in early-to-mid 1800's. While in Russia creation of railroads, and foundation of factories happened by govermental initiatives towards the end of XIX century.n Germany, France and United States industrial revolution occured in early-to-mid 1800's.
Revolusi industri terakhir terjadi di Rusia. Di Jerman, Perancis dan Amerika Serikat terjadi revolusi industri pada awal hingga pertengahan 1800-an. Sedangkan di Rusia pembuatan rel kereta api, dan pendirian pabrik terjadi atas inisiatif pemerintah menjelang akhir abad XIX. Revolusi industri Jerman, Prancis dan Amerika Serikat terjadi pada awal hingga pertengahan 1800-an.
[-0.22887374460697174, -0.17583712935447693, 0.08270637691020966, -0.15496928989887238, -0.18010610342025757, ...]
what causes hordeolum internum left lower eyelid
apa penyebab hordeolum internum kelopak mata kiri bawah
[-0.19872592389583588, 0.4119395911693573, 0.3756648004055023, -0.4884617030620575, 0.15375499427318573, ...]
- Loss:
MSELoss
Evaluation Dataset
default
- Dataset: default at c8bc0cb
- Size: 1,000,000 evaluation samples
- Columns:
english
,indonesian
, andlabel
- Approximate statistics based on the first 1000 samples:
english indonesian label type string string list details - min: 5 tokens
- mean: 46.58 tokens
- max: 128 tokens
- min: 5 tokens
- mean: 51.0 tokens
- max: 128 tokens
- size: 768 elements
- Samples:
english indonesian label do appraisers give adjustments for lot size
apakah penilai memberikan penyesuaian untuk ukuran lot?
[0.12256570905447006, 0.011573846451938152, -0.19426874816417694, -0.17596185207366943, 0.35024771094322205, ...]
hotels in binghamton ny
hotel di binghamton ny
[0.14259624481201172, -0.048470016568899155, 0.1078888401389122, 0.06728225946426392, 0.6096671223640442, ...]
guitarist kenny greenberg
gitaris kenny greenberg
[-0.6973275542259216, 0.27737292647361755, -0.09295299649238586, 0.24035970866680145, 0.154855415225029, ...]
- Loss:
MSELoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 64per_device_eval_batch_size
: 64learning_rate
: 2e-05num_train_epochs
: 5warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | default loss | default_negative_mse | default_mean_accuracy |
---|---|---|---|---|---|
0.0065 | 100 | 0.1968 | - | - | - |
0.0129 | 200 | 0.1797 | - | - | - |
0.0194 | 300 | 0.1596 | - | - | - |
0.0259 | 400 | 0.1367 | - | - | - |
0.0323 | 500 | 0.1167 | - | - | - |
0.0388 | 600 | 0.103 | - | - | - |
0.0453 | 700 | 0.0954 | - | - | - |
0.0517 | 800 | 0.0909 | - | - | - |
0.0582 | 900 | 0.088 | - | - | - |
0.0646 | 1000 | 0.0861 | - | - | - |
0.0711 | 1100 | 0.0847 | - | - | - |
0.0776 | 1200 | 0.082 | - | - | - |
0.0840 | 1300 | 0.0818 | - | - | - |
0.0905 | 1400 | 0.0813 | - | - | - |
0.0970 | 1500 | 0.0804 | - | - | - |
0.1034 | 1600 | 0.0817 | - | - | - |
0.1099 | 1700 | 0.0799 | - | - | - |
0.1164 | 1800 | 0.0804 | - | - | - |
0.1228 | 1900 | 0.0802 | - | - | - |
0.1293 | 2000 | 0.0791 | - | - | - |
0.1358 | 2100 | 0.0789 | - | - | - |
0.1422 | 2200 | 0.0783 | - | - | - |
0.1487 | 2300 | 0.0783 | - | - | - |
0.1551 | 2400 | 0.077 | - | - | - |
0.1616 | 2500 | 0.0762 | - | - | - |
0.1681 | 2600 | 0.0762 | - | - | - |
0.1745 | 2700 | 0.0754 | - | - | - |
0.1810 | 2800 | 0.075 | - | - | - |
0.1875 | 2900 | 0.0735 | - | - | - |
0.1939 | 3000 | 0.0745 | - | - | - |
0.2004 | 3100 | 0.0739 | - | - | - |
0.2069 | 3200 | 0.0732 | - | - | - |
0.2133 | 3300 | 0.0724 | - | - | - |
0.2198 | 3400 | 0.0727 | - | - | - |
0.2263 | 3500 | 0.0726 | - | - | - |
0.2327 | 3600 | 0.071 | - | - | - |
0.2392 | 3700 | 0.0713 | - | - | - |
0.2457 | 3800 | 0.0708 | - | - | - |
0.2521 | 3900 | 0.0704 | - | - | - |
0.2586 | 4000 | 0.0703 | - | - | - |
0.2650 | 4100 | 0.0704 | - | - | - |
0.2715 | 4200 | 0.0695 | - | - | - |
0.2780 | 4300 | 0.068 | - | - | - |
0.2844 | 4400 | 0.0681 | - | - | - |
0.2909 | 4500 | 0.0683 | - | - | - |
0.2974 | 4600 | 0.0674 | - | - | - |
0.3038 | 4700 | 0.0683 | - | - | - |
0.3103 | 4800 | 0.0674 | - | - | - |
0.3168 | 4900 | 0.0674 | - | - | - |
0.3232 | 5000 | 0.0666 | - | - | - |
0.3297 | 5100 | 0.0677 | - | - | - |
0.3362 | 5200 | 0.066 | - | - | - |
0.3426 | 5300 | 0.0655 | - | - | - |
0.3491 | 5400 | 0.0658 | - | - | - |
0.3555 | 5500 | 0.0658 | - | - | - |
0.3620 | 5600 | 0.0646 | - | - | - |
0.3685 | 5700 | 0.0638 | - | - | - |
0.3749 | 5800 | 0.065 | - | - | - |
0.3814 | 5900 | 0.0648 | - | - | - |
0.3879 | 6000 | 0.0636 | - | - | - |
0.3943 | 6100 | 0.0637 | - | - | - |
0.4008 | 6200 | 0.0636 | - | - | - |
0.4073 | 6300 | 0.0633 | - | - | - |
0.4137 | 6400 | 0.0629 | - | - | - |
0.4202 | 6500 | 0.0638 | - | - | - |
0.4267 | 6600 | 0.0625 | - | - | - |
0.4331 | 6700 | 0.0615 | - | - | - |
0.4396 | 6800 | 0.062 | - | - | - |
0.4461 | 6900 | 0.062 | - | - | - |
0.4525 | 7000 | 0.0614 | - | - | - |
0.4590 | 7100 | 0.0622 | - | - | - |
0.4654 | 7200 | 0.061 | - | - | - |
0.4719 | 7300 | 0.06 | - | - | - |
0.4784 | 7400 | 0.0606 | - | - | - |
0.4848 | 7500 | 0.0606 | - | - | - |
0.4913 | 7600 | 0.0597 | - | - | - |
0.4978 | 7700 | 0.0598 | - | - | - |
0.5042 | 7800 | 0.0594 | - | - | - |
0.5107 | 7900 | 0.0596 | - | - | - |
0.5172 | 8000 | 0.0584 | - | - | - |
0.5236 | 8100 | 0.0589 | - | - | - |
0.5301 | 8200 | 0.0587 | - | - | - |
0.5366 | 8300 | 0.059 | - | - | - |
0.5430 | 8400 | 0.0592 | - | - | - |
0.5495 | 8500 | 0.058 | - | - | - |
0.5560 | 8600 | 0.0576 | - | - | - |
0.5624 | 8700 | 0.0577 | - | - | - |
0.5689 | 8800 | 0.0575 | - | - | - |
0.5753 | 8900 | 0.0576 | - | - | - |
0.5818 | 9000 | 0.0575 | - | - | - |
0.5883 | 9100 | 0.0567 | - | - | - |
0.5947 | 9200 | 0.0568 | - | - | - |
0.6012 | 9300 | 0.0558 | - | - | - |
0.6077 | 9400 | 0.0558 | - | - | - |
0.6141 | 9500 | 0.0563 | - | - | - |
0.6206 | 9600 | 0.0565 | - | - | - |
0.6271 | 9700 | 0.0547 | - | - | - |
0.6335 | 9800 | 0.0555 | - | - | - |
0.6400 | 9900 | 0.0551 | - | - | - |
0.6465 | 10000 | 0.055 | - | - | - |
0.6529 | 10100 | 0.0553 | - | - | - |
0.6594 | 10200 | 0.0548 | - | - | - |
0.6658 | 10300 | 0.0542 | - | - | - |
0.6723 | 10400 | 0.0551 | - | - | - |
0.6788 | 10500 | 0.0545 | - | - | - |
0.6852 | 10600 | 0.0545 | - | - | - |
0.6917 | 10700 | 0.0542 | - | - | - |
0.6982 | 10800 | 0.0538 | - | - | - |
0.7046 | 10900 | 0.0532 | - | - | - |
0.7111 | 11000 | 0.0534 | - | - | - |
0.7176 | 11100 | 0.053 | - | - | - |
0.7240 | 11200 | 0.0534 | - | - | - |
0.7305 | 11300 | 0.0532 | - | - | - |
0.7370 | 11400 | 0.0535 | - | - | - |
0.7434 | 11500 | 0.0533 | - | - | - |
0.7499 | 11600 | 0.0532 | - | - | - |
0.7564 | 11700 | 0.053 | - | - | - |
0.7628 | 11800 | 0.0526 | - | - | - |
0.7693 | 11900 | 0.0527 | - | - | - |
0.7757 | 12000 | 0.053 | - | - | - |
0.7822 | 12100 | 0.0522 | - | - | - |
0.7887 | 12200 | 0.0521 | - | - | - |
0.7951 | 12300 | 0.0524 | - | - | - |
0.8016 | 12400 | 0.0518 | - | - | - |
0.8081 | 12500 | 0.0521 | - | - | - |
0.8145 | 12600 | 0.0516 | - | - | - |
0.8210 | 12700 | 0.0517 | - | - | - |
0.8275 | 12800 | 0.0511 | - | - | - |
0.8339 | 12900 | 0.0517 | - | - | - |
0.8404 | 13000 | 0.0516 | - | - | - |
0.8469 | 13100 | 0.0516 | - | - | - |
0.8533 | 13200 | 0.0509 | - | - | - |
0.8598 | 13300 | 0.0508 | - | - | - |
0.8662 | 13400 | 0.0506 | - | - | - |
0.8727 | 13500 | 0.0507 | - | - | - |
0.8792 | 13600 | 0.0507 | - | - | - |
0.8856 | 13700 | 0.0503 | - | - | - |
0.8921 | 13800 | 0.0504 | - | - | - |
0.8986 | 13900 | 0.0506 | - | - | - |
0.9050 | 14000 | 0.0507 | - | - | - |
0.9115 | 14100 | 0.0503 | - | - | - |
0.9180 | 14200 | 0.0496 | - | - | - |
0.9244 | 14300 | 0.0498 | - | - | - |
0.9309 | 14400 | 0.0499 | - | - | - |
0.9374 | 14500 | 0.0504 | - | - | - |
0.9438 | 14600 | 0.0493 | - | - | - |
0.9503 | 14700 | 0.0495 | - | - | - |
0.9568 | 14800 | 0.0493 | - | - | - |
0.9632 | 14900 | 0.0494 | - | - | - |
0.9697 | 15000 | 0.0495 | - | - | - |
0.9761 | 15100 | 0.0496 | - | - | - |
0.9826 | 15200 | 0.0486 | - | - | - |
0.9891 | 15300 | 0.0491 | - | - | - |
0.9955 | 15400 | 0.0485 | - | - | - |
1.0 | 15469 | - | 0.0479 | -4.9594 | 0.9693 |
1.0020 | 15500 | 0.0487 | - | - | - |
1.0085 | 15600 | 0.0488 | - | - | - |
1.0149 | 15700 | 0.0482 | - | - | - |
1.0214 | 15800 | 0.0486 | - | - | - |
1.0279 | 15900 | 0.0487 | - | - | - |
1.0343 | 16000 | 0.0487 | - | - | - |
1.0408 | 16100 | 0.0484 | - | - | - |
1.0473 | 16200 | 0.0478 | - | - | - |
1.0537 | 16300 | 0.0478 | - | - | - |
1.0602 | 16400 | 0.048 | - | - | - |
1.0666 | 16500 | 0.048 | - | - | - |
1.0731 | 16600 | 0.048 | - | - | - |
1.0796 | 16700 | 0.0478 | - | - | - |
1.0860 | 16800 | 0.0478 | - | - | - |
1.0925 | 16900 | 0.0478 | - | - | - |
1.0990 | 17000 | 0.0472 | - | - | - |
1.1054 | 17100 | 0.048 | - | - | - |
1.1119 | 17200 | 0.047 | - | - | - |
1.1184 | 17300 | 0.0477 | - | - | - |
1.1248 | 17400 | 0.0476 | - | - | - |
1.1313 | 17500 | 0.0473 | - | - | - |
1.1378 | 17600 | 0.0474 | - | - | - |
1.1442 | 17700 | 0.0472 | - | - | - |
1.1507 | 17800 | 0.0473 | - | - | - |
1.1572 | 17900 | 0.0468 | - | - | - |
1.1636 | 18000 | 0.047 | - | - | - |
1.1701 | 18100 | 0.0471 | - | - | - |
1.1765 | 18200 | 0.0467 | - | - | - |
1.1830 | 18300 | 0.0464 | - | - | - |
1.1895 | 18400 | 0.0463 | - | - | - |
1.1959 | 18500 | 0.047 | - | - | - |
1.2024 | 18600 | 0.0463 | - | - | - |
1.2089 | 18700 | 0.0466 | - | - | - |
1.2153 | 18800 | 0.0458 | - | - | - |
1.2218 | 18900 | 0.0465 | - | - | - |
1.2283 | 19000 | 0.0466 | - | - | - |
1.2347 | 19100 | 0.0459 | - | - | - |
1.2412 | 19200 | 0.0464 | - | - | - |
1.2477 | 19300 | 0.0457 | - | - | - |
1.2541 | 19400 | 0.0459 | - | - | - |
1.2606 | 19500 | 0.0463 | - | - | - |
1.2671 | 19600 | 0.0458 | - | - | - |
1.2735 | 19700 | 0.0463 | - | - | - |
1.2800 | 19800 | 0.0449 | - | - | - |
1.2864 | 19900 | 0.0455 | - | - | - |
1.2929 | 20000 | 0.0457 | - | - | - |
1.2994 | 20100 | 0.0455 | - | - | - |
1.3058 | 20200 | 0.0456 | - | - | - |
1.3123 | 20300 | 0.0453 | - | - | - |
1.3188 | 20400 | 0.0453 | - | - | - |
1.3252 | 20500 | 0.0454 | - | - | - |
1.3317 | 20600 | 0.0458 | - | - | - |
1.3382 | 20700 | 0.0449 | - | - | - |
1.3446 | 20800 | 0.0449 | - | - | - |
1.3511 | 20900 | 0.0454 | - | - | - |
1.3576 | 21000 | 0.0448 | - | - | - |
1.3640 | 21100 | 0.0445 | - | - | - |
1.3705 | 21200 | 0.0445 | - | - | - |
1.3769 | 21300 | 0.045 | - | - | - |
1.3834 | 21400 | 0.0448 | - | - | - |
1.3899 | 21500 | 0.0444 | - | - | - |
1.3963 | 21600 | 0.0446 | - | - | - |
1.4028 | 21700 | 0.0446 | - | - | - |
1.4093 | 21800 | 0.0444 | - | - | - |
1.4157 | 21900 | 0.0449 | - | - | - |
1.4222 | 22000 | 0.0447 | - | - | - |
1.4287 | 22100 | 0.044 | - | - | - |
1.4351 | 22200 | 0.0444 | - | - | - |
1.4416 | 22300 | 0.044 | - | - | - |
1.4481 | 22400 | 0.0443 | - | - | - |
1.4545 | 22500 | 0.0443 | - | - | - |
1.4610 | 22600 | 0.0445 | - | - | - |
1.4675 | 22700 | 0.0436 | - | - | - |
1.4739 | 22800 | 0.0438 | - | - | - |
1.4804 | 22900 | 0.0441 | - | - | - |
1.4868 | 23000 | 0.0437 | - | - | - |
1.4933 | 23100 | 0.0434 | - | - | - |
1.4998 | 23200 | 0.0437 | - | - | - |
1.5062 | 23300 | 0.0435 | - | - | - |
1.5127 | 23400 | 0.0437 | - | - | - |
1.5192 | 23500 | 0.043 | - | - | - |
1.5256 | 23600 | 0.0434 | - | - | - |
1.5321 | 23700 | 0.0436 | - | - | - |
1.5386 | 23800 | 0.0439 | - | - | - |
1.5450 | 23900 | 0.0438 | - | - | - |
1.5515 | 24000 | 0.0433 | - | - | - |
1.5580 | 24100 | 0.0429 | - | - | - |
1.5644 | 24200 | 0.0433 | - | - | - |
1.5709 | 24300 | 0.0428 | - | - | - |
1.5773 | 24400 | 0.0434 | - | - | - |
1.5838 | 24500 | 0.0432 | - | - | - |
1.5903 | 24600 | 0.0433 | - | - | - |
1.5967 | 24700 | 0.0426 | - | - | - |
1.6032 | 24800 | 0.0426 | - | - | - |
1.6097 | 24900 | 0.0425 | - | - | - |
1.6161 | 25000 | 0.0432 | - | - | - |
1.6226 | 25100 | 0.043 | - | - | - |
1.6291 | 25200 | 0.042 | - | - | - |
1.6355 | 25300 | 0.0427 | - | - | - |
1.6420 | 25400 | 0.0425 | - | - | - |
1.6485 | 25500 | 0.0422 | - | - | - |
1.6549 | 25600 | 0.0428 | - | - | - |
1.6614 | 25700 | 0.0423 | - | - | - |
1.6679 | 25800 | 0.0422 | - | - | - |
1.6743 | 25900 | 0.0425 | - | - | - |
1.6808 | 26000 | 0.0424 | - | - | - |
1.6872 | 26100 | 0.0426 | - | - | - |
1.6937 | 26200 | 0.0422 | - | - | - |
1.7002 | 26300 | 0.0419 | - | - | - |
1.7066 | 26400 | 0.0416 | - | - | - |
1.7131 | 26500 | 0.0421 | - | - | - |
1.7196 | 26600 | 0.0416 | - | - | - |
1.7260 | 26700 | 0.0422 | - | - | - |
1.7325 | 26800 | 0.0418 | - | - | - |
1.7390 | 26900 | 0.0425 | - | - | - |
1.7454 | 27000 | 0.0421 | - | - | - |
1.7519 | 27100 | 0.0421 | - | - | - |
1.7584 | 27200 | 0.0418 | - | - | - |
1.7648 | 27300 | 0.042 | - | - | - |
1.7713 | 27400 | 0.0419 | - | - | - |
1.7777 | 27500 | 0.0423 | - | - | - |
1.7842 | 27600 | 0.0415 | - | - | - |
1.7907 | 27700 | 0.0413 | - | - | - |
1.7971 | 27800 | 0.0423 | - | - | - |
1.8036 | 27900 | 0.0413 | - | - | - |
1.8101 | 28000 | 0.0414 | - | - | - |
1.8165 | 28100 | 0.0418 | - | - | - |
1.8230 | 28200 | 0.0414 | - | - | - |
1.8295 | 28300 | 0.0411 | - | - | - |
1.8359 | 28400 | 0.0418 | - | - | - |
1.8424 | 28500 | 0.0416 | - | - | - |
1.8489 | 28600 | 0.0417 | - | - | - |
1.8553 | 28700 | 0.041 | - | - | - |
1.8618 | 28800 | 0.0413 | - | - | - |
1.8683 | 28900 | 0.0409 | - | - | - |
1.8747 | 29000 | 0.0413 | - | - | - |
1.8812 | 29100 | 0.0413 | - | - | - |
1.8876 | 29200 | 0.0411 | - | - | - |
1.8941 | 29300 | 0.0408 | - | - | - |
1.9006 | 29400 | 0.0415 | - | - | - |
1.9070 | 29500 | 0.0415 | - | - | - |
1.9135 | 29600 | 0.0408 | - | - | - |
1.9200 | 29700 | 0.0407 | - | - | - |
1.9264 | 29800 | 0.0409 | - | - | - |
1.9329 | 29900 | 0.0414 | - | - | - |
1.9394 | 30000 | 0.0409 | - | - | - |
1.9458 | 30100 | 0.0407 | - | - | - |
1.9523 | 30200 | 0.0404 | - | - | - |
1.9588 | 30300 | 0.0408 | - | - | - |
1.9652 | 30400 | 0.0409 | - | - | - |
1.9717 | 30500 | 0.0409 | - | - | - |
1.9781 | 30600 | 0.0408 | - | - | - |
1.9846 | 30700 | 0.0403 | - | - | - |
1.9911 | 30800 | 0.0403 | - | - | - |
1.9975 | 30900 | 0.0405 | - | - | - |
2.0 | 30938 | - | 0.0394 | -4.1528 | 0.9835 |
2.0040 | 31000 | 0.0407 | - | - | - |
2.0105 | 31100 | 0.0403 | - | - | - |
2.0169 | 31200 | 0.0401 | - | - | - |
2.0234 | 31300 | 0.0404 | - | - | - |
2.0299 | 31400 | 0.0406 | - | - | - |
2.0363 | 31500 | 0.0408 | - | - | - |
2.0428 | 31600 | 0.0402 | - | - | - |
2.0493 | 31700 | 0.0402 | - | - | - |
2.0557 | 31800 | 0.0398 | - | - | - |
2.0622 | 31900 | 0.0403 | - | - | - |
2.0687 | 32000 | 0.0401 | - | - | - |
2.0751 | 32100 | 0.0405 | - | - | - |
2.0816 | 32200 | 0.0401 | - | - | - |
2.0880 | 32300 | 0.04 | - | - | - |
2.0945 | 32400 | 0.0399 | - | - | - |
2.1010 | 32500 | 0.0398 | - | - | - |
2.1074 | 32600 | 0.0406 | - | - | - |
2.1139 | 32700 | 0.0397 | - | - | - |
2.1204 | 32800 | 0.0403 | - | - | - |
2.1268 | 32900 | 0.0399 | - | - | - |
2.1333 | 33000 | 0.0401 | - | - | - |
2.1398 | 33100 | 0.0401 | - | - | - |
2.1462 | 33200 | 0.0403 | - | - | - |
2.1527 | 33300 | 0.0399 | - | - | - |
2.1592 | 33400 | 0.0398 | - | - | - |
2.1656 | 33500 | 0.0399 | - | - | - |
2.1721 | 33600 | 0.0398 | - | - | - |
2.1786 | 33700 | 0.0395 | - | - | - |
2.1850 | 33800 | 0.0395 | - | - | - |
2.1915 | 33900 | 0.0396 | - | - | - |
2.1979 | 34000 | 0.0399 | - | - | - |
2.2044 | 34100 | 0.0398 | - | - | - |
2.2109 | 34200 | 0.0393 | - | - | - |
2.2173 | 34300 | 0.0393 | - | - | - |
2.2238 | 34400 | 0.0399 | - | - | - |
2.2303 | 34500 | 0.0393 | - | - | - |
2.2367 | 34600 | 0.0398 | - | - | - |
2.2432 | 34700 | 0.0394 | - | - | - |
2.2497 | 34800 | 0.0392 | - | - | - |
2.2561 | 34900 | 0.0397 | - | - | - |
2.2626 | 35000 | 0.0399 | - | - | - |
2.2691 | 35100 | 0.0393 | - | - | - |
2.2755 | 35200 | 0.0394 | - | - | - |
2.2820 | 35300 | 0.0389 | - | - | - |
2.2884 | 35400 | 0.0392 | - | - | - |
2.2949 | 35500 | 0.0393 | - | - | - |
2.3014 | 35600 | 0.0393 | - | - | - |
2.3078 | 35700 | 0.0393 | - | - | - |
2.3143 | 35800 | 0.0391 | - | - | - |
2.3208 | 35900 | 0.0389 | - | - | - |
2.3272 | 36000 | 0.0398 | - | - | - |
2.3337 | 36100 | 0.0394 | - | - | - |
2.3402 | 36200 | 0.0389 | - | - | - |
2.3466 | 36300 | 0.0388 | - | - | - |
2.3531 | 36400 | 0.0392 | - | - | - |
2.3596 | 36500 | 0.0386 | - | - | - |
2.3660 | 36600 | 0.039 | - | - | - |
2.3725 | 36700 | 0.0387 | - | - | - |
2.3790 | 36800 | 0.0391 | - | - | - |
2.3854 | 36900 | 0.0389 | - | - | - |
2.3919 | 37000 | 0.0389 | - | - | - |
2.3983 | 37100 | 0.0387 | - | - | - |
2.4048 | 37200 | 0.0388 | - | - | - |
2.4113 | 37300 | 0.0387 | - | - | - |
2.4177 | 37400 | 0.0391 | - | - | - |
2.4242 | 37500 | 0.039 | - | - | - |
2.4307 | 37600 | 0.0384 | - | - | - |
2.4371 | 37700 | 0.0388 | - | - | - |
2.4436 | 37800 | 0.0385 | - | - | - |
2.4501 | 37900 | 0.0388 | - | - | - |
2.4565 | 38000 | 0.039 | - | - | - |
2.4630 | 38100 | 0.0387 | - | - | - |
2.4695 | 38200 | 0.0382 | - | - | - |
2.4759 | 38300 | 0.0384 | - | - | - |
2.4824 | 38400 | 0.0388 | - | - | - |
2.4888 | 38500 | 0.0381 | - | - | - |
2.4953 | 38600 | 0.0384 | - | - | - |
2.5018 | 38700 | 0.0384 | - | - | - |
2.5082 | 38800 | 0.0383 | - | - | - |
2.5147 | 38900 | 0.0382 | - | - | - |
2.5212 | 39000 | 0.0381 | - | - | - |
2.5276 | 39100 | 0.0382 | - | - | - |
2.5341 | 39200 | 0.0384 | - | - | - |
2.5406 | 39300 | 0.0387 | - | - | - |
2.5470 | 39400 | 0.0384 | - | - | - |
2.5535 | 39500 | 0.0381 | - | - | - |
2.5600 | 39600 | 0.038 | - | - | - |
2.5664 | 39700 | 0.0384 | - | - | - |
2.5729 | 39800 | 0.0379 | - | - | - |
2.5794 | 39900 | 0.0385 | - | - | - |
2.5858 | 40000 | 0.0381 | - | - | - |
2.5923 | 40100 | 0.0382 | - | - | - |
2.5987 | 40200 | 0.0377 | - | - | - |
2.6052 | 40300 | 0.0375 | - | - | - |
2.6117 | 40400 | 0.038 | - | - | - |
2.6181 | 40500 | 0.0384 | - | - | - |
2.6246 | 40600 | 0.0378 | - | - | - |
2.6311 | 40700 | 0.0379 | - | - | - |
2.6375 | 40800 | 0.0376 | - | - | - |
2.6440 | 40900 | 0.0378 | - | - | - |
2.6505 | 41000 | 0.0376 | - | - | - |
2.6569 | 41100 | 0.0381 | - | - | - |
2.6634 | 41200 | 0.0374 | - | - | - |
2.6699 | 41300 | 0.0377 | - | - | - |
2.6763 | 41400 | 0.038 | - | - | - |
2.6828 | 41500 | 0.0377 | - | - | - |
2.6892 | 41600 | 0.0379 | - | - | - |
2.6957 | 41700 | 0.0377 | - | - | - |
2.7022 | 41800 | 0.0373 | - | - | - |
2.7086 | 41900 | 0.0374 | - | - | - |
2.7151 | 42000 | 0.0373 | - | - | - |
2.7216 | 42100 | 0.0374 | - | - | - |
2.7280 | 42200 | 0.0375 | - | - | - |
2.7345 | 42300 | 0.0375 | - | - | - |
2.7410 | 42400 | 0.0379 | - | - | - |
2.7474 | 42500 | 0.0379 | - | - | - |
2.7539 | 42600 | 0.0378 | - | - | - |
2.7604 | 42700 | 0.0375 | - | - | - |
2.7668 | 42800 | 0.0375 | - | - | - |
2.7733 | 42900 | 0.0377 | - | - | - |
2.7798 | 43000 | 0.0378 | - | - | - |
2.7862 | 43100 | 0.0372 | - | - | - |
2.7927 | 43200 | 0.0374 | - | - | - |
2.7991 | 43300 | 0.0376 | - | - | - |
2.8056 | 43400 | 0.0374 | - | - | - |
2.8121 | 43500 | 0.0371 | - | - | - |
2.8185 | 43600 | 0.0377 | - | - | - |
2.8250 | 43700 | 0.0368 | - | - | - |
2.8315 | 43800 | 0.0376 | - | - | - |
2.8379 | 43900 | 0.0374 | - | - | - |
2.8444 | 44000 | 0.0378 | - | - | - |
2.8509 | 44100 | 0.0375 | - | - | - |
2.8573 | 44200 | 0.0371 | - | - | - |
2.8638 | 44300 | 0.037 | - | - | - |
2.8703 | 44400 | 0.0371 | - | - | - |
2.8767 | 44500 | 0.0374 | - | - | - |
2.8832 | 44600 | 0.037 | - | - | - |
2.8897 | 44700 | 0.0374 | - | - | - |
2.8961 | 44800 | 0.0368 | - | - | - |
2.9026 | 44900 | 0.0377 | - | - | - |
2.9090 | 45000 | 0.0375 | - | - | - |
2.9155 | 45100 | 0.0367 | - | - | - |
2.9220 | 45200 | 0.0368 | - | - | - |
2.9284 | 45300 | 0.0372 | - | - | - |
2.9349 | 45400 | 0.0374 | - | - | - |
2.9414 | 45500 | 0.0367 | - | - | - |
2.9478 | 45600 | 0.037 | - | - | - |
2.9543 | 45700 | 0.0368 | - | - | - |
2.9608 | 45800 | 0.0367 | - | - | - |
2.9672 | 45900 | 0.0372 | - | - | - |
2.9737 | 46000 | 0.0375 | - | - | - |
2.9802 | 46100 | 0.0368 | - | - | - |
2.9866 | 46200 | 0.0368 | - | - | - |
2.9931 | 46300 | 0.0367 | - | - | - |
2.9995 | 46400 | 0.0366 | - | - | - |
3.0 | 46407 | - | 0.0357 | -3.7998 | 0.9869 |
3.0060 | 46500 | 0.0372 | - | - | - |
3.0125 | 46600 | 0.0365 | - | - | - |
3.0189 | 46700 | 0.0369 | - | - | - |
3.0254 | 46800 | 0.0368 | - | - | - |
3.0319 | 46900 | 0.037 | - | - | - |
3.0383 | 47000 | 0.037 | - | - | - |
3.0448 | 47100 | 0.0367 | - | - | - |
3.0513 | 47200 | 0.0364 | - | - | - |
3.0577 | 47300 | 0.0366 | - | - | - |
3.0642 | 47400 | 0.0366 | - | - | - |
3.0707 | 47500 | 0.0371 | - | - | - |
3.0771 | 47600 | 0.0367 | - | - | - |
3.0836 | 47700 | 0.0368 | - | - | - |
3.0901 | 47800 | 0.0366 | - | - | - |
3.0965 | 47900 | 0.0362 | - | - | - |
3.1030 | 48000 | 0.0368 | - | - | - |
3.1094 | 48100 | 0.0366 | - | - | - |
3.1159 | 48200 | 0.0367 | - | - | - |
3.1224 | 48300 | 0.0369 | - | - | - |
3.1288 | 48400 | 0.0366 | - | - | - |
3.1353 | 48500 | 0.0366 | - | - | - |
3.1418 | 48600 | 0.0367 | - | - | - |
3.1482 | 48700 | 0.037 | - | - | - |
3.1547 | 48800 | 0.0367 | - | - | - |
3.1612 | 48900 | 0.0362 | - | - | - |
3.1676 | 49000 | 0.0367 | - | - | - |
3.1741 | 49100 | 0.0365 | - | - | - |
3.1806 | 49200 | 0.0363 | - | - | - |
3.1870 | 49300 | 0.036 | - | - | - |
3.1935 | 49400 | 0.0366 | - | - | - |
3.1999 | 49500 | 0.0366 | - | - | - |
3.2064 | 49600 | 0.0366 | - | - | - |
3.2129 | 49700 | 0.0361 | - | - | - |
3.2193 | 49800 | 0.0365 | - | - | - |
3.2258 | 49900 | 0.0365 | - | - | - |
3.2323 | 50000 | 0.0361 | - | - | - |
3.2387 | 50100 | 0.0365 | - | - | - |
3.2452 | 50200 | 0.0363 | - | - | - |
3.2517 | 50300 | 0.0362 | - | - | - |
3.2581 | 50400 | 0.0366 | - | - | - |
3.2646 | 50500 | 0.0366 | - | - | - |
3.2711 | 50600 | 0.0367 | - | - | - |
3.2775 | 50700 | 0.0361 | - | - | - |
3.2840 | 50800 | 0.0359 | - | - | - |
3.2905 | 50900 | 0.0363 | - | - | - |
3.2969 | 51000 | 0.0361 | - | - | - |
3.3034 | 51100 | 0.0364 | - | - | - |
3.3098 | 51200 | 0.0363 | - | - | - |
3.3163 | 51300 | 0.0362 | - | - | - |
3.3228 | 51400 | 0.0359 | - | - | - |
3.3292 | 51500 | 0.0368 | - | - | - |
3.3357 | 51600 | 0.0361 | - | - | - |
3.3422 | 51700 | 0.0359 | - | - | - |
3.3486 | 51800 | 0.0362 | - | - | - |
3.3551 | 51900 | 0.0363 | - | - | - |
3.3616 | 52000 | 0.0357 | - | - | - |
3.3680 | 52100 | 0.0358 | - | - | - |
3.3745 | 52200 | 0.036 | - | - | - |
3.3810 | 52300 | 0.0365 | - | - | - |
3.3874 | 52400 | 0.0359 | - | - | - |
3.3939 | 52500 | 0.0359 | - | - | - |
3.4003 | 52600 | 0.0362 | - | - | - |
3.4068 | 52700 | 0.0358 | - | - | - |
3.4133 | 52800 | 0.036 | - | - | - |
3.4197 | 52900 | 0.0366 | - | - | - |
3.4262 | 53000 | 0.036 | - | - | - |
3.4327 | 53100 | 0.0357 | - | - | - |
3.4391 | 53200 | 0.036 | - | - | - |
3.4456 | 53300 | 0.036 | - | - | - |
3.4521 | 53400 | 0.036 | - | - | - |
3.4585 | 53500 | 0.0364 | - | - | - |
3.4650 | 53600 | 0.0359 | - | - | - |
3.4715 | 53700 | 0.0354 | - | - | - |
3.4779 | 53800 | 0.0359 | - | - | - |
3.4844 | 53900 | 0.036 | - | - | - |
3.4909 | 54000 | 0.0355 | - | - | - |
3.4973 | 54100 | 0.0358 | - | - | - |
3.5038 | 54200 | 0.0355 | - | - | - |
3.5102 | 54300 | 0.036 | - | - | - |
3.5167 | 54400 | 0.0354 | - | - | - |
3.5232 | 54500 | 0.0357 | - | - | - |
3.5296 | 54600 | 0.0356 | - | - | - |
3.5361 | 54700 | 0.036 | - | - | - |
3.5426 | 54800 | 0.036 | - | - | - |
3.5490 | 54900 | 0.0358 | - | - | - |
3.5555 | 55000 | 0.0356 | - | - | - |
3.5620 | 55100 | 0.0357 | - | - | - |
3.5684 | 55200 | 0.0356 | - | - | - |
3.5749 | 55300 | 0.0358 | - | - | - |
3.5814 | 55400 | 0.036 | - | - | - |
3.5878 | 55500 | 0.0356 | - | - | - |
3.5943 | 55600 | 0.0358 | - | - | - |
3.6007 | 55700 | 0.0351 | - | - | - |
3.6072 | 55800 | 0.0352 | - | - | - |
3.6137 | 55900 | 0.0357 | - | - | - |
3.6201 | 56000 | 0.0359 | - | - | - |
3.6266 | 56100 | 0.035 | - | - | - |
3.6331 | 56200 | 0.0357 | - | - | - |
3.6395 | 56300 | 0.0354 | - | - | - |
3.6460 | 56400 | 0.0352 | - | - | - |
3.6525 | 56500 | 0.0356 | - | - | - |
3.6589 | 56600 | 0.0356 | - | - | - |
3.6654 | 56700 | 0.0349 | - | - | - |
3.6719 | 56800 | 0.0358 | - | - | - |
3.6783 | 56900 | 0.0355 | - | - | - |
3.6848 | 57000 | 0.0353 | - | - | - |
3.6913 | 57100 | 0.0355 | - | - | - |
3.6977 | 57200 | 0.0353 | - | - | - |
3.7042 | 57300 | 0.035 | - | - | - |
3.7106 | 57400 | 0.0351 | - | - | - |
3.7171 | 57500 | 0.035 | - | - | - |
3.7236 | 57600 | 0.0353 | - | - | - |
3.7300 | 57700 | 0.0353 | - | - | - |
3.7365 | 57800 | 0.0356 | - | - | - |
3.7430 | 57900 | 0.0356 | - | - | - |
3.7494 | 58000 | 0.0355 | - | - | - |
3.7559 | 58100 | 0.0355 | - | - | - |
3.7624 | 58200 | 0.0354 | - | - | - |
3.7688 | 58300 | 0.0353 | - | - | - |
3.7753 | 58400 | 0.0357 | - | - | - |
3.7818 | 58500 | 0.0353 | - | - | - |
3.7882 | 58600 | 0.035 | - | - | - |
3.7947 | 58700 | 0.0355 | - | - | - |
3.8012 | 58800 | 0.035 | - | - | - |
3.8076 | 58900 | 0.0355 | - | - | - |
3.8141 | 59000 | 0.0351 | - | - | - |
3.8205 | 59100 | 0.0353 | - | - | - |
3.8270 | 59200 | 0.0349 | - | - | - |
3.8335 | 59300 | 0.0355 | - | - | - |
3.8399 | 59400 | 0.0353 | - | - | - |
3.8464 | 59500 | 0.0357 | - | - | - |
3.8529 | 59600 | 0.0351 | - | - | - |
3.8593 | 59700 | 0.0351 | - | - | - |
3.8658 | 59800 | 0.0352 | - | - | - |
3.8723 | 59900 | 0.035 | - | - | - |
3.8787 | 60000 | 0.0353 | - | - | - |
3.8852 | 60100 | 0.0351 | - | - | - |
3.8917 | 60200 | 0.0352 | - | - | - |
3.8981 | 60300 | 0.0351 | - | - | - |
3.9046 | 60400 | 0.0356 | - | - | - |
3.9110 | 60500 | 0.0352 | - | - | - |
3.9175 | 60600 | 0.0347 | - | - | - |
3.9240 | 60700 | 0.035 | - | - | - |
3.9304 | 60800 | 0.0352 | - | - | - |
3.9369 | 60900 | 0.0356 | - | - | - |
3.9434 | 61000 | 0.0346 | - | - | - |
3.9498 | 61100 | 0.0352 | - | - | - |
3.9563 | 61200 | 0.0349 | - | - | - |
3.9628 | 61300 | 0.0349 | - | - | - |
3.9692 | 61400 | 0.0354 | - | - | - |
3.9757 | 61500 | 0.0354 | - | - | - |
3.9822 | 61600 | 0.0348 | - | - | - |
3.9886 | 61700 | 0.0349 | - | - | - |
3.9951 | 61800 | 0.0347 | - | - | - |
4.0 | 61876 | - | 0.0339 | -3.6284 | 0.9876 |
4.0016 | 61900 | 0.0351 | - | - | - |
4.0080 | 62000 | 0.035 | - | - | - |
4.0145 | 62100 | 0.0348 | - | - | - |
4.0209 | 62200 | 0.0349 | - | - | - |
4.0274 | 62300 | 0.0352 | - | - | - |
4.0339 | 62400 | 0.0351 | - | - | - |
4.0403 | 62500 | 0.0352 | - | - | - |
4.0468 | 62600 | 0.0347 | - | - | - |
4.0533 | 62700 | 0.0347 | - | - | - |
4.0597 | 62800 | 0.0348 | - | - | - |
4.0662 | 62900 | 0.035 | - | - | - |
4.0727 | 63000 | 0.035 | - | - | - |
4.0791 | 63100 | 0.0349 | - | - | - |
4.0856 | 63200 | 0.035 | - | - | - |
4.0921 | 63300 | 0.0349 | - | - | - |
4.0985 | 63400 | 0.0346 | - | - | - |
4.1050 | 63500 | 0.035 | - | - | - |
4.1114 | 63600 | 0.0347 | - | - | - |
4.1179 | 63700 | 0.0351 | - | - | - |
4.1244 | 63800 | 0.0351 | - | - | - |
4.1308 | 63900 | 0.035 | - | - | - |
4.1373 | 64000 | 0.0349 | - | - | - |
4.1438 | 64100 | 0.0352 | - | - | - |
4.1502 | 64200 | 0.0351 | - | - | - |
4.1567 | 64300 | 0.0348 | - | - | - |
4.1632 | 64400 | 0.0347 | - | - | - |
4.1696 | 64500 | 0.0352 | - | - | - |
4.1761 | 64600 | 0.0346 | - | - | - |
4.1826 | 64700 | 0.0345 | - | - | - |
4.1890 | 64800 | 0.0346 | - | - | - |
4.1955 | 64900 | 0.0351 | - | - | - |
4.2020 | 65000 | 0.0348 | - | - | - |
4.2084 | 65100 | 0.035 | - | - | - |
4.2149 | 65200 | 0.0345 | - | - | - |
4.2213 | 65300 | 0.0349 | - | - | - |
4.2278 | 65400 | 0.0351 | - | - | - |
4.2343 | 65500 | 0.0345 | - | - | - |
4.2407 | 65600 | 0.035 | - | - | - |
4.2472 | 65700 | 0.0346 | - | - | - |
4.2537 | 65800 | 0.0347 | - | - | - |
4.2601 | 65900 | 0.0351 | - | - | - |
4.2666 | 66000 | 0.0347 | - | - | - |
4.2731 | 66100 | 0.0354 | - | - | - |
4.2795 | 66200 | 0.0342 | - | - | - |
4.2860 | 66300 | 0.0345 | - | - | - |
4.2925 | 66400 | 0.0349 | - | - | - |
4.2989 | 66500 | 0.0347 | - | - | - |
4.3054 | 66600 | 0.0347 | - | - | - |
4.3118 | 66700 | 0.0348 | - | - | - |
4.3183 | 66800 | 0.0347 | - | - | - |
4.3248 | 66900 | 0.0346 | - | - | - |
4.3312 | 67000 | 0.0353 | - | - | - |
4.3377 | 67100 | 0.0345 | - | - | - |
4.3442 | 67200 | 0.0343 | - | - | - |
4.3506 | 67300 | 0.035 | - | - | - |
4.3571 | 67400 | 0.0346 | - | - | - |
4.3636 | 67500 | 0.0343 | - | - | - |
4.3700 | 67600 | 0.0344 | - | - | - |
4.3765 | 67700 | 0.0348 | - | - | - |
4.3830 | 67800 | 0.0348 | - | - | - |
4.3894 | 67900 | 0.0345 | - | - | - |
4.3959 | 68000 | 0.0347 | - | - | - |
4.4024 | 68100 | 0.0345 | - | - | - |
4.4088 | 68200 | 0.0346 | - | - | - |
4.4153 | 68300 | 0.0349 | - | - | - |
4.4217 | 68400 | 0.0349 | - | - | - |
4.4282 | 68500 | 0.0345 | - | - | - |
4.4347 | 68600 | 0.0346 | - | - | - |
4.4411 | 68700 | 0.0345 | - | - | - |
4.4476 | 68800 | 0.0347 | - | - | - |
4.4541 | 68900 | 0.0346 | - | - | - |
4.4605 | 69000 | 0.035 | - | - | - |
4.4670 | 69100 | 0.0343 | - | - | - |
4.4735 | 69200 | 0.0346 | - | - | - |
4.4799 | 69300 | 0.0346 | - | - | - |
4.4864 | 69400 | 0.0346 | - | - | - |
4.4929 | 69500 | 0.0342 | - | - | - |
4.4993 | 69600 | 0.0346 | - | - | - |
4.5058 | 69700 | 0.0342 | - | - | - |
4.5123 | 69800 | 0.0348 | - | - | - |
4.5187 | 69900 | 0.0341 | - | - | - |
4.5252 | 70000 | 0.0344 | - | - | - |
4.5316 | 70100 | 0.0345 | - | - | - |
4.5381 | 70200 | 0.0348 | - | - | - |
4.5446 | 70300 | 0.0349 | - | - | - |
4.5510 | 70400 | 0.0344 | - | - | - |
4.5575 | 70500 | 0.0342 | - | - | - |
4.5640 | 70600 | 0.0346 | - | - | - |
4.5704 | 70700 | 0.0342 | - | - | - |
4.5769 | 70800 | 0.0345 | - | - | - |
4.5834 | 70900 | 0.0347 | - | - | - |
4.5898 | 71000 | 0.0345 | - | - | - |
4.5963 | 71100 | 0.0343 | - | - | - |
4.6028 | 71200 | 0.0341 | - | - | - |
4.6092 | 71300 | 0.0341 | - | - | - |
4.6157 | 71400 | 0.0347 | - | - | - |
4.6221 | 71500 | 0.0347 | - | - | - |
4.6286 | 71600 | 0.0339 | - | - | - |
4.6351 | 71700 | 0.0344 | - | - | - |
4.6415 | 71800 | 0.0342 | - | - | - |
4.6480 | 71900 | 0.0342 | - | - | - |
4.6545 | 72000 | 0.0346 | - | - | - |
4.6609 | 72100 | 0.0342 | - | - | - |
4.6674 | 72200 | 0.0341 | - | - | - |
4.6739 | 72300 | 0.0344 | - | - | - |
4.6803 | 72400 | 0.0345 | - | - | - |
4.6868 | 72500 | 0.0345 | - | - | - |
4.6933 | 72600 | 0.0342 | - | - | - |
4.6997 | 72700 | 0.0341 | - | - | - |
4.7062 | 72800 | 0.034 | - | - | - |
4.7127 | 72900 | 0.0343 | - | - | - |
4.7191 | 73000 | 0.0337 | - | - | - |
4.7256 | 73100 | 0.0343 | - | - | - |
4.7320 | 73200 | 0.0343 | - | - | - |
4.7385 | 73300 | 0.0346 | - | - | - |
4.7450 | 73400 | 0.0346 | - | - | - |
4.7514 | 73500 | 0.0345 | - | - | - |
4.7579 | 73600 | 0.0343 | - | - | - |
4.7644 | 73700 | 0.0344 | - | - | - |
4.7708 | 73800 | 0.0345 | - | - | - |
4.7773 | 73900 | 0.0347 | - | - | - |
4.7838 | 74000 | 0.034 | - | - | - |
4.7902 | 74100 | 0.034 | - | - | - |
4.7967 | 74200 | 0.0348 | - | - | - |
4.8032 | 74300 | 0.0338 | - | - | - |
4.8096 | 74400 | 0.0346 | - | - | - |
4.8161 | 74500 | 0.0344 | - | - | - |
4.8225 | 74600 | 0.0342 | - | - | - |
4.8290 | 74700 | 0.034 | - | - | - |
4.8355 | 74800 | 0.0346 | - | - | - |
4.8419 | 74900 | 0.0346 | - | - | - |
4.8484 | 75000 | 0.0346 | - | - | - |
4.8549 | 75100 | 0.034 | - | - | - |
4.8613 | 75200 | 0.0343 | - | - | - |
4.8678 | 75300 | 0.034 | - | - | - |
4.8743 | 75400 | 0.0344 | - | - | - |
4.8807 | 75500 | 0.0344 | - | - | - |
4.8872 | 75600 | 0.0342 | - | - | - |
4.8937 | 75700 | 0.0341 | - | - | - |
4.9001 | 75800 | 0.0345 | - | - | - |
4.9066 | 75900 | 0.0347 | - | - | - |
4.9131 | 76000 | 0.0341 | - | - | - |
4.9195 | 76100 | 0.0339 | - | - | - |
4.9260 | 76200 | 0.0343 | - | - | - |
4.9324 | 76300 | 0.0346 | - | - | - |
4.9389 | 76400 | 0.0344 | - | - | - |
4.9454 | 76500 | 0.0341 | - | - | - |
4.9518 | 76600 | 0.034 | - | - | - |
4.9583 | 76700 | 0.0342 | - | - | - |
4.9648 | 76800 | 0.0344 | - | - | - |
4.9712 | 76900 | 0.0344 | - | - | - |
4.9777 | 77000 | 0.0343 | - | - | - |
4.9842 | 77100 | 0.0341 | - | - | - |
4.9906 | 77200 | 0.0341 | - | - | - |
4.9971 | 77300 | 0.0342 | - | - | - |
5.0 | 77345 | - | 0.0331 | -3.5554 | 0.9877 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.4.0
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MSELoss
@inproceedings{reimers-2020-multilingual-sentence-bert,
title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2020",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2004.09813",
}
- Downloads last month
- 67
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for AryoshiW/distilbert-en-id-qa
Dataset used to train AryoshiW/distilbert-en-id-qa
Evaluation results
- Negative Mse on defaultself-reported-3.555
- Src2Trg Accuracy on defaultself-reported0.989
- Trg2Src Accuracy on defaultself-reported0.986
- Mean Accuracy on defaultself-reported0.988