llama-3b-yelp-5

This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1560
  • Accuracy: 0.5031
  • Precision: 0.4995
  • Recall: 0.5007
  • F1: 0.4992

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 0.2559 100 1.5388 0.3881 0.3781 0.3857 0.3795
No log 0.5118 200 1.3305 0.4521 0.4572 0.4485 0.4488
No log 0.7678 300 1.2792 0.4671 0.4605 0.4669 0.4569
No log 1.0230 400 1.2323 0.4813 0.4753 0.4787 0.4749
5.6322 1.2790 500 1.2116 0.4912 0.4880 0.4897 0.4872
5.6322 1.5349 600 1.1980 0.4917 0.4883 0.4895 0.4876
5.6322 1.7908 700 1.1828 0.4979 0.4965 0.4953 0.4940
5.6322 2.0461 800 1.1738 0.498 0.4924 0.4963 0.4930
5.6322 2.3020 900 1.1682 0.4994 0.4991 0.4987 0.4980
4.4778 2.5579 1000 1.1581 0.5033 0.4979 0.5017 0.4993
4.4778 2.8138 1100 1.1560 0.5031 0.4995 0.5007 0.4992

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for BayanDuygu/llama-3b-yelp-5

Adapter
(121)
this model