Text Generation
Transformers
Safetensors
llama
conversational
text-generation-inference
Inference Endpoints

1 Kaggle Account Fine-Tuning Challenge:

I just realized that abusing free services isn't cool, so I set myself a challenge—to fine-tune this model using only one Kaggle account

[Placeholder for image, maybe... or not]

Base model: mergekit-community/mergekit-ties-svidyqt

The dataset is already listed, with just a small addition of persona-like data generated with Gemma, and some instruction following data, probably less than 1000 examples, added for better generalization, since the two don’t have system turns (honestly, I just wanted to round it up from 24K to 25K, it looks nicer when tokenizing)

#TRAINING: STAGE ONE
layers = [
    {'layer': 0, 'components': ['v_proj', 'o_proj', 'down_proj', 'gate_proj']},
    {'layer': 1, 'components': ['o_proj', 'down_proj','gate_proj']},
    {'layer': 2, 'components': ['v_proj', 'o_proj', 'gate_proj']},
    {'layer': 3, 'components': ['o_proj', 'down_proj', 'gate_proj']},
    {'layer': 4, 'components': ['v_proj', 'o_proj', 'down_proj', 'gate_proj']}
]
    trainable_lm_head=True,
    trainable_embed_tokens=True,
    trainable_model_norm=True

#TRAINING: STAGE TWO
layers = [
    {'layer': 5, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 6, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 7, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    #
    {'layer': 11, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 12, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 13, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    #
    {'layer': 17, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 18, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 19, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    #
    {'layer': 23, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 24, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 25, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    #
    {'layer': 28, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 29, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']}
]
    trainable_lm_head=False,
    trainable_embed_tokens=False,
    trainable_model_norm=False
    
#TRAINING: STAGE THREE
#I changed the dataset seed at training stage 3, because... why not? The training was already a mess, might as well make it even more interesting
layers = [
    {'layer': 8, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 9, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 10, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    #
    {'layer': 14, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 15, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 16, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    #
    {'layer': 20, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 21, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 22, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    #
    {'layer': 26, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 27, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    #
    {'layer': 30, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']},
    {'layer': 31, 'components': ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj']}
]
    trainable_lm_head=False,
    trainable_embed_tokens=False,
    trainable_model_norm=False
Downloads last month
40
Safetensors
Model size
8.03B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for BintangFortuna/Llama3.1-Reddit-Writer-8B

Finetuned
(1)
this model
Quantizations
3 models

Datasets used to train BintangFortuna/Llama3.1-Reddit-Writer-8B