MonaTrix-v4
MonaTrix-v4 is a merge of the following models using LazyMergekit:
- Kukedlc/NeuralMaxime-7B-slerp
- eren23/ogno-monarch-jaskier-merge-7b
- eren23/dpo-binarized-NeutrixOmnibe-7B
𧩠Configuration
models:
- model: mistralai/Mistral-7B-v0.1
# No parameters necessary for base model
- model: Kukedlc/NeuralMaxime-7B-slerp
#Emphasize the beginning of Vicuna format models
parameters:
weight: 0.36
density: 0.65
- model: eren23/ogno-monarch-jaskier-merge-7b
parameters:
weight: 0.34
density: 0.6
# Vicuna format
- model: eren23/dpo-binarized-NeutrixOmnibe-7B
parameters:
weight: 0.3
density: 0.6
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "CultriX/MonaTrix-v4"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 75
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for CultriX/MonaTrix-v4
Merge model
this model