|
--- |
|
license: agpl-3.0 |
|
metrics: |
|
- wer |
|
base_model: |
|
- openai/whisper-large-v3 |
|
pipeline_tag: automatic-speech-recognition |
|
tags: |
|
- upper_sorbian |
|
--- |
|
|
|
|
|
## Model Description |
|
|
|
This model was fine-tuned on over 24 hours of transcribed upper sorbian speech to aid future research, conservation and revitalisation of the language. |
|
|
|
|
|
## Training Data |
|
- **Source:** Stiftung für das sorbische Volk / Załožba za serbski lud (https://stiftung.sorben.com/) |
|
- **Volume:** 1493 Minutes, 10% Validation Set, 10% Test Set |
|
|
|
## Training Details |
|
- **Hyperparameters**: |
|
- Batch size: 64 |
|
- Learning rate: 3e-6, linear decay |
|
- **Optimizer**: AdamW |
|
- **Warmup**: 1000 steps |
|
- **Additional Techniques**: BF16 training, initial 15 layers frozen |
|
|
|
|
|
## Performance |
|
### Metrics |
|
- **Word Error Rate:** 5.7 |
|
|
|
## Usage |
|
### Example Code |
|
|
|
To use the model, follow this example code: |
|
|
|
```python |
|
import torch |
|
import torchaudio |
|
from transformers import WhisperProcessor, WhisperForConditionalGeneration |
|
|
|
# Load the model and processor |
|
model_name = "DILHTWD/whisper-large-v3-hsb" |
|
processor_name = "openai/whisper-large-v3" |
|
processor = WhisperProcessor.from_pretrained(processor_name) |
|
model = WhisperForConditionalGeneration.from_pretrained(model_name) |
|
|
|
# Load and preprocess the audio |
|
audio, sample_rate = torchaudio.load("test.mp3") |
|
if sample_rate != 16000: |
|
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(audio) |
|
input_features = processor(audio.squeeze().numpy(), sampling_rate=16000, return_tensors="pt").input_features |
|
|
|
# Generate transcription |
|
with torch.no_grad(): |
|
predicted_ids = model.generate(input_features) |
|
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] |
|
|
|
# Print the transcription |
|
print("Transcription:", transcription) |
|
``` |
|
|
|
## Model Details |
|
- **Model Name:** DILHTWD/whisper-large-v3-hsb |
|
- **Publisher:** Data Intelligence Lab, Hochschule für Technik und Wirtschaft Dresden |
|
- **Model Version:** 1.0.0 |
|
- **Model Date:** 2024-11-11 |
|
- **License:** [AGPL-3.0](https://www.gnu.org/licenses/agpl-3.0.de.html) |
|
- **Architecture:** Whisper Large v3 |
|
- **Task:** Automatic Speech Recognition |
|
|
|
|