PathFinderAi3.0 / README.md
Daemontatox's picture
Adding Evaluation Results (#2)
055ba2b verified
---
base_model: Daemontatox/PathFinderAI3.0
tags:
- text-generation-inference
- transformers
- unsloth
- qwen2
- trl
license: apache-2.0
language:
- en
model-index:
- name: PathFinderAi3.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: wis-k/instruction-following-eval
split: train
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 42.71
name: averaged accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPathFinderAi3.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: SaylorTwift/bbh
split: test
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 55.54
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPathFinderAi3.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: lighteval/MATH-Hard
split: test
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 48.34
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPathFinderAi3.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
split: train
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 21.14
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPathFinderAi3.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 20.05
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPathFinderAi3.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 52.86
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/?search=Daemontatox%2FPathFinderAi3.0
name: Open LLM Leaderboard
---
![image](./image.webp)
# PathFinderAI 3.0
PathFinderAI 3.0 is a high-performance language model designed for advanced reasoning, real-time text analysis, and decision support. Fine-tuned for diverse applications, it builds upon the capabilities of Qwen2, optimized with cutting-edge tools for efficiency and performance.
## Features
- **Advanced Reasoning:** Fine-tuned for real-time problem-solving and logic-driven tasks.
- **Enhanced Performance:** Trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and the Hugging Face TRL library.
- **Multi-domain Capability:** Excels in education, research, business, legal, and healthcare applications.
- **Optimized Architecture:** Leverages Qwen2 for robust language understanding and generation.
## Training Details
- **Base Model:** Daemontatox/PathFinderAI3.0
- **Training Frameworks:** [Unsloth](https://github.com/unslothai/unsloth) and Hugging Face’s TRL library.
- **Optimization:** Quantization-aware training for faster inference and deployment on resource-constrained environments.
## Deployment
This model is ideal for deployment on both cloud platforms and edge devices, including Raspberry Pi, utilizing efficient quantization techniques.
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
## License
The model is open-sourced under the Apache 2.0 license.
## Usage
To load the model:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "Daemontatox/PathFinderAI3.0"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Example usage
input_text = "What is the capital of France?"
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
```
Model Applications
PathFinderAI 3.0 is designed for:
Real-time reasoning and problem-solving
Text generation and comprehension
Legal and policy analysis
Educational tutoring
Healthcare decision support
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__PathFinderAi3.0-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FPathFinderAi3.0&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 40.11|
|IFEval (0-Shot) | 42.71|
|BBH (3-Shot) | 55.54|
|MATH Lvl 5 (4-Shot)| 48.34|
|GPQA (0-shot) | 21.14|
|MuSR (0-shot) | 20.05|
|MMLU-PRO (5-shot) | 52.86|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/Daemontatox__PathFinderAi3.0-details)!
Summarized results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/contents/viewer/default/train?q=Daemontatox%2FPathFinderAi3.0&sort[column]=Average%20%E2%AC%86%EF%B8%8F&sort[direction]=desc)!
| Metric |Value (%)|
|-------------------|--------:|
|**Average** | 40.11|
|IFEval (0-Shot) | 42.71|
|BBH (3-Shot) | 55.54|
|MATH Lvl 5 (4-Shot)| 48.34|
|GPQA (0-shot) | 21.14|
|MuSR (0-shot) | 20.05|
|MMLU-PRO (5-shot) | 52.86|