SoteDiffusion Wuerstchen3

Anime finetune of Würstchen V3.
Currently is in early state in training.
No commercial use thanks to StabilityAI.

Release Notes

Did major cleanup on the dataset in this release.
Changed the training parameters and started from a fresh state.
Switch to FairAI license. (Still no commercial use.)

UI Guide

SD.Next

URL: https://github.com/vladmandic/automatic/

Go to Models -> Huggingface and type Disty0/sotediffusion-wuerstchen3-alpha1-decoder into the model name and press download.
Load Disty0/sotediffusion-wuerstchen3-alpha1-decoder after the download process is complete.

Prompt:

very aesthetic, best quality, newest,

Negative Prompt:

very displeasing, worst quality, oldest, monochrome, sketch, realistic,

Parameters:
Sampler: Default

Steps: 30 or 40
Refiner Steps: 10

CFG: 8
Secondary CFG: 1 or 1.2

Resolution: 1024x1536, 2048x1152
Anything works as long as it's a multiply of 128.

ComfyUI

Please refer to CivitAI: https://civitai.com/models/353284

Code Example

pip install diffusers
import torch
from diffusers import StableCascadeCombinedPipeline

device = "cuda"
dtype = torch.bfloat16
model = "Disty0/sotediffusion-wuerstchen3-alpha1-decoder"

pipe = StableCascadeCombinedPipeline.from_pretrained(model, torch_dtype=dtype)

# send everything to the gpu:
pipe = pipe.to(device, dtype=dtype)
pipe.prior_pipe = pipe.prior_pipe.to(device, dtype=dtype)

# or enable model offload to save vram:
# pipe.enable_model_cpu_offload()



prompt = "1girl, solo, cowboy shot, straight hair, looking at viewer, hoodie, indoors, slight smile, casual, furniture, doorway, very aesthetic, best quality, newest,"
negative_prompt = "very displeasing, worst quality, oldest, monochrome, sketch, realistic,"

output = pipe(
    width=1024,
    height=1536,
    prompt=prompt,
    negative_prompt=negative_prompt,
    decoder_guidance_scale=1.0,
    prior_guidance_scale=8.0,
    prior_num_inference_steps=40,
    output_type="pil",
    num_inference_steps=10
).images[0]

## do something with the output image

Training Status:

GPU used for training: 1x AMD RX 7900 XTX 24GB
GPU Hours: 100

dataset name training done remaining
newest 003 228
recent 003 169
mid 003 121
early 003 067
oldest 003 017
pixiv 003 039
visual novel cg 003 025
anime wallpaper 003 010
Total 32 682

Note: chunks starts from 0 and there are 8000 images per chunk

Dataset:

GPU used for captioning: 1x Intel ARC A770 16GB
GPU Hours: 350

Model used for captioning: SmilingWolf/wd-swinv2-tagger-v3
Command:

python /mnt/DataSSD/AI/Apps/kohya_ss/sd-scripts/finetune/tag_images_by_wd14_tagger.py --model_dir "/mnt/DataSSD/AI/models/wd14_tagger_model" --repo_id "SmilingWolf/wd-swinv2-tagger-v3" --recursive --remove_underscore --use_rating_tags --character_tags_first --character_tag_expand --append_tags --onnx --caption_separator ", " --general_threshold 0.35 --character_threshold 0.50 --batch_size 4 --caption_extension ".txt" ./
dataset name total images total chunk
newest 1.848.331 232
recent 1.380.630 173
mid 993.227 125
early 566.152 071
oldest 160.397 021
pixiv 343.614 043
visual novel cg 231.358 029
anime wallpaper 104.790 014
Total 5.628.499 708

Note:

  • Smallest size is 1280x600 | 768.000 pixels
  • Deduped based on image similarity using czkawka-cli

Tags:

Model is trained with random tag order but this is the order in the dataset if you are interested:

aesthetic tags, quality tags, date tags, custom tags, rating tags, character, series, rest of the tags

Date:

tag date
newest 2022 to 2024
recent 2019 to 2021
mid 2015 to 2018
early 2011 to 2014
oldest 2005 to 2010

Aesthetic Tags:

Model used: shadowlilac/aesthetic-shadow-v2

score greater than tag count
0.90 extremely aesthetic 125.451
0.80 very aesthetic 887.382
0.70 aesthetic 1.049.857
0.50 slightly aesthetic 1.643.091
0.40 not displeasing 569.543
0.30 not aesthetic 445.188
0.20 slightly displeasing 341.424
0.10 displeasing 237.660
rest of them very displeasing 328.712

Quality Tags:

Model used: https://huggingface.co/hakurei/waifu-diffusion-v1-4/blob/main/models/aes-B32-v0.pth

score greater than tag count
0.980 best quality 1.270.447
0.900 high quality 498.244
0.750 great quality 351.006
0.500 medium quality 366.448
0.250 normal quality 368.380
0.125 bad quality 279.050
0.025 low quality 538.958
rest of them worst quality 1.955.966

Rating Tags

tag count
general 1.416.451
sensitive 3.447.664
nsfw 427.459
explicit nsfw 336.925

Custom Tags:

dataset name custom tag
image boards date,
pixiv art by Display_Name,
visual novel cg Full_VN_Name (short_3_letter_name), visual novel cg,
anime wallpaper date, anime wallpaper,

Training Parameters:

Software used: Kohya SD-Scripts with Stable Cascade branch
https://github.com/kohya-ss/sd-scripts/tree/stable-cascade

Base model: Disty0/sote-diffusion-cascade-alpha0

Command:

LD_PRELOAD=/usr/lib/libtcmalloc.so.4 accelerate launch  --mixed_precision fp16 --num_cpu_threads_per_process 1 stable_cascade_train_stage_c.py \
--mixed_precision fp16 \
--save_precision fp16 \
--full_fp16 \
--sdpa \
--gradient_checkpointing \
--train_text_encoder \
--resolution "1024,1024" \
--train_batch_size 2 \
--gradient_accumulation_steps 8 \
--learning_rate 1e-5 \
--learning_rate_te1 1e-5 \
--lr_scheduler constant_with_warmup \
--lr_warmup_steps 100 \
--optimizer_type adafactor \
--optimizer_args "scale_parameter=False" "relative_step=False" "warmup_init=False" \
--max_grad_norm 0 \
--token_warmup_min 1 \
--token_warmup_step 0 \
--shuffle_caption \
--caption_separator ", " \
--caption_dropout_rate 0 \
--caption_tag_dropout_rate 0 \
--caption_dropout_every_n_epochs 0 \
--dataset_repeats 1 \
--save_state \
--save_every_n_steps 256 \
--sample_every_n_steps 64 \
--max_token_length 225 \
--max_train_epochs 1 \
--caption_extension ".txt" \
--max_data_loader_n_workers 2 \
--persistent_data_loader_workers \
--enable_bucket \
--min_bucket_reso 256 \
--max_bucket_reso 4096 \
--bucket_reso_steps 64 \
--bucket_no_upscale \
--log_with tensorboard \
--output_name sotediffusion-wr3_3b \
--train_data_dir /mnt/DataSSD/AI/anime_image_dataset/combined/combined-0004/0005 \
--in_json /mnt/DataSSD/AI/anime_image_dataset/combined/combined-0004/0005.json \
--output_dir /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0005 \
--logging_dir /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0005/logs \
--resume /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b-state \
--stage_c_checkpoint_path /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b.safetensors \
--text_model_checkpoint_path /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/sotediffusion-wr3_3b-4/0004/sotediffusion-wr3_3b_text_model.safetensors \
--effnet_checkpoint_path /mnt/DataSSD/AI/models/wuerstchen3/effnet_encoder.safetensors \
--previewer_checkpoint_path /mnt/DataSSD/AI/models/wuerstchen3/previewer.safetensors \
--sample_prompts /mnt/DataSSD/AI/SoteDiffusion/Wuerstchen3/config/sotediffusion-prompt.txt

Limitations and Bias

Bias

  • This model is intended for anime illustrations.
    Realistic capabilites are not tested at all.

Limitations

  • Can fall back to realistic.
    Add "realistic" tag to the negatives when this happens.
  • Far shot eyes can be bad.
  • Anatomy and hands can be bad.
  • Still in active training.

License

(This part is copied directly from Animagine V3.1 and modified.)

SoteDiffusion models falls under Fair AI Public License 1.0-SD license, which is compatible with Stable Diffusion models’ license. Key points:

  1. Modification Sharing: If you modify SoteDiffusion models, you must share both your changes and the original license.
  2. Source Code Accessibility: If your modified version is network-accessible, provide a way (like a download link) for others to get the source code. This applies to derived models too.
  3. Distribution Terms: Any distribution must be under this license or another with similar rules.
  4. Compliance: Non-compliance must be fixed within 30 days to avoid license termination, emphasizing transparency and adherence to open-source values.

Notes: Anything not covered by Fair AI license is inherited from Stability AI Non-Commercial license which is named as LICENSE_INHERIT. Meaning, still no commercial use of any kind.

Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including Disty0/sotediffusion-wuerstchen3-alpha1