mistral-v0.1-supercot-lora
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the supercot dataset. It achieves the following results on the evaluation set:
- Loss: 0.9790
Model description
SuperCOT is a LoRA trained with the aim of making Mistral follow prompts for Langchain better, by infusing chain-of-thought datasets, code explanations and instructions, snippets, logical deductions and Alpaca GPT-4 prompts. It uses a mixture of the following datasets:
https://huggingface.co/datasets/QingyiSi/Alpaca-CoT
- Chain of thought QED
- Chain of thought Aqua
- CodeAlpaca
https://huggingface.co/datasets/neulab/conala
- Code snippets
https://huggingface.co/datasets/yahma/alpaca-cleaned
- Alpaca GPT4
Intended uses & limitations
The model will show biases similar to those exhibited by the base model. It is not intended for supplying factual information or advice in any form.
Training and evaluation data
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.7661 | 0.06 | 20 | 1.5173 |
0.7681 | 0.12 | 40 | 1.2323 |
0.6647 | 0.18 | 60 | 1.1306 |
0.6742 | 0.24 | 80 | 1.0847 |
0.6995 | 0.3 | 100 | 1.0573 |
0.6883 | 0.36 | 120 | 1.0412 |
0.6437 | 0.42 | 140 | 1.0375 |
0.6331 | 0.48 | 160 | 1.0186 |
0.6686 | 0.54 | 180 | 1.0153 |
0.6767 | 0.6 | 200 | 1.0042 |
0.7037 | 0.66 | 220 | 1.0023 |
0.6994 | 0.72 | 240 | 1.0014 |
0.7012 | 0.78 | 260 | 0.9996 |
0.6599 | 0.84 | 280 | 0.9926 |
0.6401 | 0.9 | 300 | 0.9913 |
0.6665 | 0.96 | 320 | 0.9910 |
0.5771 | 1.02 | 340 | 0.9907 |
0.6286 | 1.08 | 360 | 0.9830 |
0.6064 | 1.14 | 380 | 0.9865 |
0.5976 | 1.19 | 400 | 0.9802 |
0.5512 | 1.25 | 420 | 0.9817 |
0.6333 | 1.31 | 440 | 0.9810 |
0.5883 | 1.37 | 460 | 0.9817 |
0.5822 | 1.43 | 480 | 0.9783 |
0.5878 | 1.49 | 500 | 0.9757 |
0.5951 | 1.55 | 520 | 0.9753 |
0.6466 | 1.61 | 540 | 0.9719 |
0.6246 | 1.67 | 560 | 0.9681 |
0.627 | 1.73 | 580 | 0.9705 |
0.6214 | 1.79 | 600 | 0.9691 |
0.6558 | 1.85 | 620 | 0.9709 |
0.5736 | 1.91 | 640 | 0.9674 |
0.6188 | 1.97 | 660 | 0.9674 |
0.5293 | 2.03 | 680 | 0.9742 |
0.5463 | 2.09 | 700 | 0.9766 |
0.5184 | 2.15 | 720 | 0.9776 |
0.5349 | 2.21 | 740 | 0.9783 |
0.5536 | 2.27 | 760 | 0.9794 |
0.5016 | 2.33 | 780 | 0.9822 |
0.5075 | 2.39 | 800 | 0.9795 |
0.5529 | 2.45 | 820 | 0.9808 |
0.5168 | 2.51 | 840 | 0.9784 |
0.5416 | 2.57 | 860 | 0.9793 |
0.4845 | 2.63 | 880 | 0.9804 |
0.5487 | 2.69 | 900 | 0.9801 |
0.5313 | 2.75 | 920 | 0.9797 |
0.5449 | 2.81 | 940 | 0.9790 |
0.5303 | 2.87 | 960 | 0.9795 |
0.5599 | 2.93 | 980 | 0.9795 |
0.544 | 2.99 | 1000 | 0.9790 |
Framework versions
- Transformers 4.34.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.0
Citations
Alpaca COT datasets
@misc{alpaca-cot,
author = {Qingyi Si, Zheng Lin },
school = {Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China},
title = {Alpaca-CoT: An Instruction Fine-Tuning Platform with Instruction Data Collection and Unified Large Language Models Interface},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/PhoebusSi/alpaca-CoT}},
}
Stanford Alpaca
@misc{alpaca,
author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
title = {Stanford Alpaca: An Instruction-following LLaMA model},
year = {2023},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}
Google FLAN
@inproceedings{weifinetuned,
title={Finetuned Language Models are Zero-Shot Learners},
author={Wei, Jason and Bosma, Maarten and Zhao, Vincent and Guu, Kelvin and Yu, Adams Wei and Lester, Brian and Du, Nan and Dai, Andrew M and Le, Quoc V},
booktitle={International Conference on Learning Representations}
}
- Downloads last month
- 9
Model tree for Doctor-Shotgun/mistral-v0.1-supercot-lora
Base model
mistralai/Mistral-7B-v0.1