Built with Axolotl

mistral-v0.1-supercot-lora

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the supercot dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9790

Model description

SuperCOT is a LoRA trained with the aim of making Mistral follow prompts for Langchain better, by infusing chain-of-thought datasets, code explanations and instructions, snippets, logical deductions and Alpaca GPT-4 prompts. It uses a mixture of the following datasets:

https://huggingface.co/datasets/QingyiSi/Alpaca-CoT

  • Chain of thought QED
  • Chain of thought Aqua
  • CodeAlpaca

https://huggingface.co/datasets/neulab/conala

  • Code snippets

https://huggingface.co/datasets/yahma/alpaca-cleaned

  • Alpaca GPT4

Intended uses & limitations

The model will show biases similar to those exhibited by the base model. It is not intended for supplying factual information or advice in any form.

Training and evaluation data

kaiokendev/SuperCOT-dataset

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.7661 0.06 20 1.5173
0.7681 0.12 40 1.2323
0.6647 0.18 60 1.1306
0.6742 0.24 80 1.0847
0.6995 0.3 100 1.0573
0.6883 0.36 120 1.0412
0.6437 0.42 140 1.0375
0.6331 0.48 160 1.0186
0.6686 0.54 180 1.0153
0.6767 0.6 200 1.0042
0.7037 0.66 220 1.0023
0.6994 0.72 240 1.0014
0.7012 0.78 260 0.9996
0.6599 0.84 280 0.9926
0.6401 0.9 300 0.9913
0.6665 0.96 320 0.9910
0.5771 1.02 340 0.9907
0.6286 1.08 360 0.9830
0.6064 1.14 380 0.9865
0.5976 1.19 400 0.9802
0.5512 1.25 420 0.9817
0.6333 1.31 440 0.9810
0.5883 1.37 460 0.9817
0.5822 1.43 480 0.9783
0.5878 1.49 500 0.9757
0.5951 1.55 520 0.9753
0.6466 1.61 540 0.9719
0.6246 1.67 560 0.9681
0.627 1.73 580 0.9705
0.6214 1.79 600 0.9691
0.6558 1.85 620 0.9709
0.5736 1.91 640 0.9674
0.6188 1.97 660 0.9674
0.5293 2.03 680 0.9742
0.5463 2.09 700 0.9766
0.5184 2.15 720 0.9776
0.5349 2.21 740 0.9783
0.5536 2.27 760 0.9794
0.5016 2.33 780 0.9822
0.5075 2.39 800 0.9795
0.5529 2.45 820 0.9808
0.5168 2.51 840 0.9784
0.5416 2.57 860 0.9793
0.4845 2.63 880 0.9804
0.5487 2.69 900 0.9801
0.5313 2.75 920 0.9797
0.5449 2.81 940 0.9790
0.5303 2.87 960 0.9795
0.5599 2.93 980 0.9795
0.544 2.99 1000 0.9790

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.0

Citations

Alpaca COT datasets

@misc{alpaca-cot,
  author = {Qingyi Si, Zheng Lin },
  school = {Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China},
  title = {Alpaca-CoT: An Instruction Fine-Tuning Platform with Instruction Data Collection and Unified Large Language Models Interface},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/PhoebusSi/alpaca-CoT}},
}

Stanford Alpaca

@misc{alpaca,
  author = {Rohan Taori and Ishaan Gulrajani and Tianyi Zhang and Yann Dubois and Xuechen Li and Carlos Guestrin and Percy Liang and Tatsunori B. Hashimoto },
  title = {Stanford Alpaca: An Instruction-following LLaMA model},
  year = {2023},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/tatsu-lab/stanford_alpaca}},
}

Google FLAN

@inproceedings{weifinetuned,
  title={Finetuned Language Models are Zero-Shot Learners},
  author={Wei, Jason and Bosma, Maarten and Zhao, Vincent and Guu, Kelvin and Yu, Adams Wei and Lester, Brian and Du, Nan and Dai, Andrew M and Le, Quoc V},
  booktitle={International Conference on Learning Representations}
}
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Doctor-Shotgun/mistral-v0.1-supercot-lora

Quantized
(169)
this model

Collection including Doctor-Shotgun/mistral-v0.1-supercot-lora