wav2vec2-large-xls-r-300m-bg-d2

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - BG dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3421
  • Wer: 0.2860

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with test split

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2 --dataset mozilla-foundation/common_voice_8_0 --config bg --split test --log_outputs

  1. To evaluate on speech-recognition-community-v2/dev_data

python eval.py --model_id DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2 --dataset speech-recognition-community-v2/dev_data --config bg --split validation --chunk_length_s 10 --stride_length_s 1

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00025
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 700
  • num_epochs: 35
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
6.8791 1.74 200 3.1902 1.0
3.0441 3.48 400 2.8098 0.9864
1.1499 5.22 600 0.4668 0.5014
0.4968 6.96 800 0.4162 0.4472
0.3553 8.7 1000 0.3580 0.3777
0.3027 10.43 1200 0.3422 0.3506
0.2562 12.17 1400 0.3556 0.3639
0.2272 13.91 1600 0.3621 0.3583
0.2125 15.65 1800 0.3436 0.3358
0.1904 17.39 2000 0.3650 0.3545
0.1695 19.13 2200 0.3366 0.3241
0.1532 20.87 2400 0.3550 0.3311
0.1453 22.61 2600 0.3582 0.3131
0.1359 24.35 2800 0.3524 0.3084
0.1233 26.09 3000 0.3503 0.2973
0.1114 27.83 3200 0.3434 0.2946
0.1051 29.57 3400 0.3474 0.2956
0.0965 31.3 3600 0.3426 0.2907
0.0923 33.04 3800 0.3478 0.2894
0.0894 34.78 4000 0.3421 0.2860

Framework versions

  • Transformers 4.16.2
  • Pytorch 1.10.0+cu111
  • Datasets 1.18.3
  • Tokenizers 0.11.0
Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train DrishtiSharma/wav2vec2-large-xls-r-300m-bg-d2

Evaluation results