Built with Axolotl

See axolotl config

axolotl version: 0.4.1

# Experiment goal: are the representations diverse enough with just annotation on a variety of input texts?

base_model: meta-llama/Meta-Llama-3-8B
# Heralax/bittensor-mistral-pretrained-base-1
#mistralai/Mistral-7B-v0.1
# Heralax/bittensor-mistral-pretrained-base-1
#mistralai/Mistral-7B-v0.1
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
is_mistral_derived_model: false

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: json
    data_files: ./essays_annotation_syspromptvaried.jsonl
    ds_type: json
    type: sharegpt
    conversation: chatml
  - path: json
    data_files: ./tweets_annotation_syspromptvaried.jsonl
    ds_type: json
    type: sharegpt
    conversation: chatml
  - path: json
    data_files: ./autometa_4_percent.json
    ds_type: json
    type: sharegpt
    conversation: chatml
  # - path: json
  #   data_files: paul_graham_essays_completion.json
  #   ds_type: json
  #   type: completion
  
dataset_prepared_path: last_run_prepared
output_dir: ./paulgraham-finetune-out

sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
shuffle_merged_datasets: true

wandb_project: pg-test
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 6
micro_batch_size: 2
eval_batch_size: 1
num_epochs: 7
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000024
weight_decay: 0
# Gradient clipping max norm
max_grad_norm: 1.0
noisy_embedding_alpha: 0

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint: 
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

# fsdp:
  # - full_shard
  # - auto_wrap
# fsdp_config:
  # fsdp_offload_params: false
  # fsdp_state_dict_type: FULL_STATE_DICT
  # fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
# warmup_steps: 10
warmup_ratio: 0.5
auto_resume_from_checkpoints: false
#warmup_ratio: 0.5
eval_steps: 10
saves_per_epoch: 1
eval_sample_packing: false
save_total_limit: 2
debug:
deepspeed: deepspeed_configs/zero2.json
chat_template: chatml
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
  pad_token: "</s>"

Visualize in Weights & Biases

paulgraham-finetune-out

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.4e-05
  • train_batch_size: 2
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 6
  • gradient_accumulation_steps: 6
  • total_train_batch_size: 72
  • total_eval_batch_size: 6
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 31
  • num_epochs: 7

Training results

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
9
GGUF
Model size
8.03B params
Architecture
llama

8-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Heralax/llama-3-paulgraham-2-no-special-tokens

Quantized
(240)
this model