INT8 DistilBart finetuned on CNN DailyMail

Post-training dynamic quantization

This is an INT8 PyTorch model quantized with huggingface/optimum-intel through the usage of Intel® Neural Compressor.

The original fp32 model comes from the fine-tuned model sshleifer/distilbart-cnn-12-6.

Below linear modules (21/133) are fallbacked to fp32 for less than 1% relative accuracy loss:

'model.decoder.layers.2.fc2', 'model.encoder.layers.11.fc2', 'model.decoder.layers.1.fc2', 'model.decoder.layers.0.fc2', 'model.decoder.layers.4.fc1', 'model.decoder.layers.3.fc2', 'model.encoder.layers.8.fc2', 'model.decoder.layers.3.fc1', 'model.encoder.layers.11.fc1', 'model.encoder.layers.0.fc2', 'model.encoder.layers.3.fc1', 'model.encoder.layers.10.fc2', 'model.decoder.layers.5.fc1', 'model.encoder.layers.1.fc2', 'model.encoder.layers.3.fc2', 'lm_head', 'model.encoder.layers.7.fc2', 'model.decoder.layers.0.fc1', 'model.encoder.layers.4.fc1', 'model.encoder.layers.10.fc1', 'model.encoder.layers.6.fc1'

Evaluation result

INT8 FP32
Accuracy (eval-rougeLsum) 41.4707 41.8117
Model size 722M 1249M

Load with optimum:

# transformers <= 4.23.0
from optimum.intel import INCModelForSeq2SeqLM

model_id = "Intel/distilbart-cnn-12-6-int8-dynamic"
int8_model = INCModelForSeq2SeqLM.from_pretrained(model_id)
Downloads last month
11
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train Intel/distilbart-cnn-12-6-int8-dynamic-inc

Collection including Intel/distilbart-cnn-12-6-int8-dynamic-inc