Model Card for Model ID
base_model : google/gemma-7b
Basic usage
# pip install accelerate
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
tokenizer = AutoTokenizer.from_pretrained("MDDDDR/gemma-7b-it-v0.2")
model = AutoModelForCausalLM.from_pretrained(
"MDDDDR/gemma-7b-it-v0.2",
device_map="auto",
torch_dtype=torch.bfloat16
)
input_text = "사과가 뭐야?"
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
outputs = model.generate(**input_ids)
print(tokenizer.decode(outputs[0]))
Training dataset
- dataset_1 : MarkrAI/KoCommercial-Dataset
- dataset_2 : nlpai-lab/kullm-v2
lora_config and bnb_config in Training
bnd_config = BitsAndBytesConfig(
load_in_4bit = True,
bnb_4bit_use_double_quant = True,
bnb_4bit_quant_type = 'nf4',
bnb_4bit_compute_dtype = torch.bfloat16
)
lora_config = LoraConfig(
r = 8,
lora_alpha = 8,
lora_dropout = 0.05,
target_modules = ['gate_proj', 'up_proj', 'down_proj']
)
Model Evaluation
Tasks | Version | Filter | n-shot | Metric | Value | Stderr | ||
---|---|---|---|---|---|---|---|---|
kobest_boolq | 1 | none | 0 | acc | ↑ | 0.5912 | ± | 0.0131 |
none | 0 | f1 | ↑ | 0.5183 | ± | N/A | ||
kobest_copa | 1 | none | 0 | acc | ↑ | 0.6320 | ± | 0.0153 |
none | 0 | f1 | ↑ | 0.6313 | ± | N/A | ||
kobest_hellaswag | 1 | none | 0 | acc | ↑ | 0.4220 | ± | 0.0221 |
none | 0 | acc_norm | ↑ | 0.5280 | ± | 0.0223 | ||
none | 0 | f1 | ↑ | 0.4190 | ± | N/A | ||
kobest_sentineg | 1 | none | 0 | acc | ↑ | 0.4962 | ± | 0.0251 |
none | 0 | f1 | ↑ | 0.3747 | ± | N/A |
Hardware
- RTX 3090 Ti 24GB x 1
- Training Time : 80 hours
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.